Question #218202

Given the function:y(x,t)=A1cosk1(x+vt)-A2 sink2(x-vt). Determine whether this a solution to the wave equation


1
Expert's answer
2021-07-19T09:52:20-0400

The wave equation has a form

2yt2=v22yx2\frac{\partial^2y}{\partial t^2}=v^2\frac{\partial^2y}{\partial x^2}

In our case

y=A1cosk1(x+vt)A2sink2(xvt)y=A_1\cos k_1(x+vt)-A_2\sin k_2(x-vt)

We get

2yt2=A1k12v2cosk1(x+vt)+A2k22v2sink2(xvt)\frac{\partial^2y}{\partial t^2}=-A_1k_1^2v^2\cos k_1(x+vt)\\ +A_2k_2^2v^2\sin k_2(x-vt)v22yx2=v2(A1k12cosk1(x+vt)+A2k22sink2(xvt))v^2\frac{\partial^2y}{\partial x^2}=v^2\left(-A_1k_1^2\cos k_1(x+vt)\right.\\ \left.+A_2k_2^2\sin k_2(x-vt)\right)

Hence, the function y(x,t)y(x,t) is a solution of the wave equation.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS