Let’s write the magnetic force that acts on the particle travelling with a velocity in a magnetic field :
"F=q(v\\times B)."Let's first calculate the cross product "\\vec{v}\\times \\vec{B}":
"\\vec{v}\\times \\vec{B}=\\begin{vmatrix}\n \\hat{i} & \\hat{j} & \\hat{k} \\\\\n v_x & v_y & v_z \\\\\n B_x & B_y & B_z\n\\end{vmatrix},""\\vec{v}\\times \\vec{B}=\\hat{i}\\begin{vmatrix}\n v_y & v_z \\\\\n B_y & B_z\n\\end{vmatrix}-\\hat{j}\\begin{vmatrix}\n v_x & v_z \\\\\n B_x & B_z\n\\end{vmatrix}+\\hat{k}\\begin{vmatrix}\n v_x & v_y \\\\\n B_x & B_y\n\\end{vmatrix},""\\vec{v}\\times \\vec{B}=(v_yB_z-B_yv_z)\\hat{i}-(v_xB_z-B_xv_z)\\hat{j}+(v_xB_y-B_xv_y)\\hat{k}."Substituting components of "v" and "B", we get:
"\\vec{v}\\times \\vec{B}=(2-8)\\dfrac{T\\cdot m}{s}\\hat{i}-(1-10)\\dfrac{T\\cdot m}{s}\\hat{j}+(4-10)\\dfrac{T\\cdot m}{s}\\hat{k},""\\vec{v}\\times \\vec{B}=(-6\\ \\dfrac{T\\cdot m}{s})\\hat{i}+(9\\ \\dfrac{T\\cdot m}{s})\\hat{j}-(6\\ \\dfrac{T\\cdot m}{s})\\hat{k}."Finally, we can find the magnetic force:
"F=2\\ C\\cdot[(-6\\ \\dfrac{T\\cdot m}{s})\\hat{i}+(9\\ \\dfrac{T\\cdot m}{s})\\hat{j}-(6\\ \\dfrac{T\\cdot m}{s})\\hat{k}],""F=(-12\\ N)\\hat{i}+(18\\ N)\\hat{j}-(12\\ N)\\hat{k}."
Comments
Leave a comment