Question #214147

 A 2 C charge travels with a velocity of ~v = (1.0ˆi+2.0ˆj+2.0 ˆk)m/s through a uniform magnetic field of (5.0ˆi + 4.0ˆj + 1.0 ˆk)T. Calculate the magnetic force exerted on the electron, in vector form.


1
Expert's answer
2021-07-06T08:22:40-0400

Let’s write the magnetic force that acts on the particle travelling with a velocity in a magnetic field :


F=q(v×B).F=q(v\times B).

Let's first calculate the cross product v×B\vec{v}\times \vec{B}:


v×B=i^j^k^vxvyvzBxByBz,\vec{v}\times \vec{B}=\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ v_x & v_y & v_z \\ B_x & B_y & B_z \end{vmatrix},v×B=i^vyvzByBzj^vxvzBxBz+k^vxvyBxBy,\vec{v}\times \vec{B}=\hat{i}\begin{vmatrix} v_y & v_z \\ B_y & B_z \end{vmatrix}-\hat{j}\begin{vmatrix} v_x & v_z \\ B_x & B_z \end{vmatrix}+\hat{k}\begin{vmatrix} v_x & v_y \\ B_x & B_y \end{vmatrix},v×B=(vyBzByvz)i^(vxBzBxvz)j^+(vxByBxvy)k^.\vec{v}\times \vec{B}=(v_yB_z-B_yv_z)\hat{i}-(v_xB_z-B_xv_z)\hat{j}+(v_xB_y-B_xv_y)\hat{k}.

Substituting components of vv and BB, we get:


v×B=(28)Tmsi^(110)Tmsj^+(410)Tmsk^,\vec{v}\times \vec{B}=(2-8)\dfrac{T\cdot m}{s}\hat{i}-(1-10)\dfrac{T\cdot m}{s}\hat{j}+(4-10)\dfrac{T\cdot m}{s}\hat{k},v×B=(6 Tms)i^+(9 Tms)j^(6 Tms)k^.\vec{v}\times \vec{B}=(-6\ \dfrac{T\cdot m}{s})\hat{i}+(9\ \dfrac{T\cdot m}{s})\hat{j}-(6\ \dfrac{T\cdot m}{s})\hat{k}.

Finally, we can find the magnetic force:


F=2 C[(6 Tms)i^+(9 Tms)j^(6 Tms)k^],F=2\ C\cdot[(-6\ \dfrac{T\cdot m}{s})\hat{i}+(9\ \dfrac{T\cdot m}{s})\hat{j}-(6\ \dfrac{T\cdot m}{s})\hat{k}],F=(12 N)i^+(18 N)j^(12 N)k^.F=(-12\ N)\hat{i}+(18\ N)\hat{j}-(12\ N)\hat{k}.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS