Answer to Question #214147 in Physics for nela

Question #214147

 A 2 C charge travels with a velocity of ~v = (1.0ˆi+2.0ˆj+2.0 ˆk)m/s through a uniform magnetic field of (5.0ˆi + 4.0ˆj + 1.0 ˆk)T. Calculate the magnetic force exerted on the electron, in vector form.


1
Expert's answer
2021-07-06T08:22:40-0400

Let’s write the magnetic force that acts on the particle travelling with a velocity in a magnetic field :


"F=q(v\\times B)."

Let's first calculate the cross product "\\vec{v}\\times \\vec{B}":


"\\vec{v}\\times \\vec{B}=\\begin{vmatrix}\n \\hat{i} & \\hat{j} & \\hat{k} \\\\\n v_x & v_y & v_z \\\\\n B_x & B_y & B_z\n\\end{vmatrix},""\\vec{v}\\times \\vec{B}=\\hat{i}\\begin{vmatrix}\n v_y & v_z \\\\\n B_y & B_z\n\\end{vmatrix}-\\hat{j}\\begin{vmatrix}\n v_x & v_z \\\\\n B_x & B_z\n\\end{vmatrix}+\\hat{k}\\begin{vmatrix}\n v_x & v_y \\\\\n B_x & B_y\n\\end{vmatrix},""\\vec{v}\\times \\vec{B}=(v_yB_z-B_yv_z)\\hat{i}-(v_xB_z-B_xv_z)\\hat{j}+(v_xB_y-B_xv_y)\\hat{k}."

Substituting components of "v" and "B", we get:


"\\vec{v}\\times \\vec{B}=(2-8)\\dfrac{T\\cdot m}{s}\\hat{i}-(1-10)\\dfrac{T\\cdot m}{s}\\hat{j}+(4-10)\\dfrac{T\\cdot m}{s}\\hat{k},""\\vec{v}\\times \\vec{B}=(-6\\ \\dfrac{T\\cdot m}{s})\\hat{i}+(9\\ \\dfrac{T\\cdot m}{s})\\hat{j}-(6\\ \\dfrac{T\\cdot m}{s})\\hat{k}."

Finally, we can find the magnetic force:


"F=2\\ C\\cdot[(-6\\ \\dfrac{T\\cdot m}{s})\\hat{i}+(9\\ \\dfrac{T\\cdot m}{s})\\hat{j}-(6\\ \\dfrac{T\\cdot m}{s})\\hat{k}],""F=(-12\\ N)\\hat{i}+(18\\ N)\\hat{j}-(12\\ N)\\hat{k}."

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog