Answer to Question #207539 in Physics for pumpkin

Question #207539

A particle with a charge of -1.24x10^8 C is moving with instantaneous velocity (1.49x10^4m/s) î +(3.85x10^4m/s) ĵ.​ What is the force exerted on this particle by a magnetic field

(a) (1.40T)î+ (2.30T)

(b) (-1.25T)î+ (2.00T)ĵ + (-3.50T)

1
Expert's answer
2021-06-16T14:22:06-0400

(a) Let’s write the magnetic force that acts on the particle travelling with a velocity  in a magnetic field :


"F=q(v\\times B)."

Let us first calculate the cross product "\\vec{v}\\times \\vec{B}":


"\\vec{v}\\times \\vec{B}=\\begin{vmatrix}\n \\hat{i} & \\hat{j} & \\hat{k} \\\\\n v_x & v_y & 0 \\\\\n B_x & 0 & B_z\n\\end{vmatrix},""\\vec{v}\\times \\vec{B}=\\hat{i}\\begin{vmatrix}\n v_y & 0 \\\\\n 0 & B_z\n\\end{vmatrix}-\\hat{j}\\begin{vmatrix}\n v_x & 0 \\\\\n B_x & B_z\n\\end{vmatrix}+\\hat{k}\\begin{vmatrix}\n v_x & v_y \\\\\n B_x & 0\n\\end{vmatrix},""\\vec{v}\\times \\vec{B}=(v_yB_z)\\hat{i}-(v_xB_z)\\hat{j}+(-v_yB_x)\\hat{k},"

Substituting components of "v" and "B", we get:


"\\vec{v}\\times \\vec{B}=(8.85\\cdot10^4\\ \\dfrac{m\\cdot T}{s})\\hat{i}-(3.43\\cdot10^4\\ \\dfrac{m\\cdot T}{s})\\hat{j}-(5.39\\cdot10^4\\ \\dfrac{m\\cdot T}{s})\\hat{k}."

Finally, we can find the magnetic force:

"F=-1.24\\cdot10^8\\ C\\cdot[(8.85\\cdot10^4\\ \\dfrac{m\\cdot T}{s})\\hat{i}-(3.43\\cdot10^4\\ \\dfrac{m\\cdot T}{s})\\hat{j}-(5.39\\cdot10^4\\ \\dfrac{m\\cdot T}{s})\\hat{k}],"


"F=(-1.1\\cdot10^{13}\\ N)\\hat{i}+(4.25\\cdot10^{12}\\ N)\\hat{j}+(6.68\\cdot10^{12}\\ N)\\hat{k}."

(b) Let’s write the magnetic force that acts on the particle travelling with a velocity  in a magnetic field :


"F=q(v\\times B)."

Let us first calculate the cross product "\\vec{v}\\times \\vec{B}":


"\\vec{v}\\times \\vec{B}=\\begin{vmatrix}\n \\hat{i} & \\hat{j} & \\hat{k} \\\\\n v_x & v_y & 0 \\\\\n B_x & B_y & B_z\n\\end{vmatrix},""\\vec{v}\\times \\vec{B}=\\hat{i}\\begin{vmatrix}\n v_y & 0 \\\\\n 0 & B_z\n\\end{vmatrix}-\\hat{j}\\begin{vmatrix}\n v_x & 0 \\\\\n B_x & B_z\n\\end{vmatrix}+\\hat{k}\\begin{vmatrix}\n v_x & v_y \\\\\n B_x & B_y\n\\end{vmatrix},""\\vec{v}\\times \\vec{B}=(v_yB_z)\\hat{i}-(v_xB_z)\\hat{j}+(v_xB_y-v_yB_x)\\hat{k},"

Substituting components of "v" and "B", we get:


"\\vec{v}\\times \\vec{B}=(-1.35\\cdot10^5\\ \\dfrac{m\\cdot T}{s})\\hat{i}+(5.21\\cdot10^4\\ \\dfrac{m\\cdot T}{s})\\hat{j}+(7.79\\cdot10^4\\ \\dfrac{m\\cdot T}{s})\\hat{k}."

Finally, we can find the magnetic force:

"F=-1.24\\cdot10^8\\ C\\cdot[(-1.35\\cdot10^5\\ \\dfrac{m\\cdot T}{s})\\hat{i}+(5.21\\cdot10^4\\ \\dfrac{m\\cdot T}{s})\\hat{j}+(7.79\\cdot10^4\\ \\dfrac{m\\cdot T}{s})\\hat{k}],"

"F=(1.67\\cdot10^{13}\\ N)\\hat{i}-(6.46\\cdot10^{12}\\ N)\\hat{j}-(9.66\\cdot10^{12}\\ N)\\hat{k}."

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog