Question #205610

A body is to be projected from the ground to have a range of 45m.If the horizontal component of its initial velocity is 15m/s ,the angle of projection is where g=10



1
Expert's answer
2021-06-11T11:21:26-0400

Let's first find the total time of flight of the body:


x=v0xtflight,x=v_{0x}t_{flight},tflight=xv0x=45 m15 ms=3 s.t_{flight}=\dfrac{x}{v_{0x}}=\dfrac{45\ m}{15\ \dfrac{m}{s}}=3\ s.

Let's find the time that the body takes to reach its maximum height:


vy=v0ygt,v_y=v_{0y}-gt,0=v0ygt,0=v_{0y}-gt,t=v0yg.t=\dfrac{v_{0y}}{g}.

Since, tflight=2tt_{flight}=2t we can write:


tflight2=v0yg.\dfrac{t_{flight}}{2}=\dfrac{v_{0y}}{g}.

From this equation we can find the vertical component of body's initial velocity:


v0y=12tflightg=123 s10 ms2=15 ms.v_{0y}=\dfrac{1}{2}t_{flight}g=\dfrac{1}{2}\cdot3\ s\cdot10\ \dfrac{m}{s^2}=15\ \dfrac{m}{s}.

Let's write horizontal and vertical components of body's initial velocity:


v0x=v0cosθ,(1)v_{0x}=v_0cos\theta, (1)v0y=v0sinθ.(2)v_{0y}=v_0sin\theta. (2)

Dividing the second equation by the first one, we can find the angle of projection:


tanθ=v0yv0x=15 ms15 ms=1,tan\theta=\dfrac{v_{0y}}{v_{0x}}=\dfrac{15\ \dfrac{m}{s}}{15\ \dfrac{m}{s}}=1,θ=tan1(1)=45.\theta=tan^{-1}(1)=45^{\circ}.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS