Vector 𝑨⃗ has magnitude 4 units, vector 𝑩⃗⃗ has magnitude 6 units. The angle between 𝑨⃗ and 𝑩⃗⃗ is 60. Calculate the magnitude of 2𝑨⃗ + 3𝑩⃗⃗
The magnitude of c=2a+3b\bold c = 2 \bold a + 3 \bold bc=2a+3b is:
∣c∣=<2a+3b,2a+3b>=4∣a∣2+12<a,b>+9∣b∣2=4⋅16+12⋅4⋅6⋅cos60+9⋅36=532=2133|\bold c| = \sqrt{<2 \bold a+ 3 \bold b, 2 \bold a + 3 \bold b>} = \sqrt{4 |\bold a|^2 + 12<\bold a, \bold b> + 9 |\bold b|^2} = \sqrt{4 \cdot 16 + 12 \cdot 4 \cdot 6 \cdot \cos 60 + 9 \cdot 36} = \sqrt{532} = 2 \sqrt{133}∣c∣=<2a+3b,2a+3b>=4∣a∣2+12<a,b>+9∣b∣2=4⋅16+12⋅4⋅6⋅cos60+9⋅36=532=2133
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments