Explain in 3 paragraphs: What is Physics in its entirety, its nature, importance and application in the real world?
Physics, science that deals with the structure of matter and the interactions between the fundamental constituents of the observable universe. In the broadest sense, physics is concerned with all aspects of nature on both the macroscopic and submicroscopic levels. Its scope of study encompasses not only the behaviour of objects under the action of given forces but also the nature and origin of gravitational, electromagnetic, and nuclear force fields. Its ultimate objective is the formulation of a few comprehensive principles that bring together and explain all such disparate phenomena.
Physics is the basic physical science. Until rather recent times physics and natural philosophy were used interchangeably for the science whose aim is the discovery and formulation of the fundamental laws of nature. As the modern sciences developed and became increasingly specialized, physics came to denote that part of physical science not included in astronomy, chemistry, geology, and engineering. Physics plays an important role in all the natural sciences, however, and all such fields have branches in which physical laws and measurements receive special emphasis, bearing such names as astrophysics, geophysics, biophysics, and even psychophysics. Physics can, at base, be defined as the science of matter, motion, and energy. Its laws are typically expressed with economy and precision in the language of mathematics.
Indeed, whenever a branch of physics has reached such a degree of maturity that its basic elements are comprehended in general principles, it has moved from basic to applied physics and thence to technology. Thus almost all current activity in classical physics consists of applied physics, and its contents form the core of many branches of engineering. Discoveries in modern physics are converted with increasing rapidity into technical innovations and analytical tools for associated disciplines. There are, for example, such nascent fields as nuclear and biomedical engineering, quantum chemistry and quantum optics, and radio, X-ray, and gamma-ray astronomy, as well as such analytic tools as radioisotopes, spectroscopy, and lasers, which all stem directly from basic physics
Comments
Leave a comment