(a)
v x ( t = 1 s ) = v 0 x = 30 m s , v_x(t=1\ s)=v_{0x}=30\ \dfrac{m}{s}, v x ( t = 1 s ) = v 0 x = 30 s m , v y ( t = 1 s ) = v 0 y − g t = 20 m s − 9.8 m s 2 ⋅ 1 s = 10.2 m s . v_y(t=1\ s)=v_{0y}-gt=20\ \dfrac{m}{s}-9.8\ \dfrac{m}{s^2}\cdot1\ s=10.2\ \dfrac{m}{s}. v y ( t = 1 s ) = v 0 y − g t = 20 s m − 9.8 s 2 m ⋅ 1 s = 10.2 s m . (b) Let's first find the initial velocity of the ball from the Pythagorean theorem:
v 0 = v 0 x 2 + v 0 y 2 = ( 30 m s ) 2 + ( 20 m s ) 2 = 36.05 m s . v_0=\sqrt{v_{0x}^2+v_{0y}^2}=\sqrt{(30\ \dfrac{m}{s})^2+(20\ \dfrac{m}{s})^2}=36.05\ \dfrac{m}{s}. v 0 = v 0 x 2 + v 0 y 2 = ( 30 s m ) 2 + ( 20 s m ) 2 = 36.05 s m . Then, let's find the launch angle from the geometry:
θ = c o s − 1 ( v 0 x v 0 ) , \theta=cos^{-1}(\dfrac{v_{0x}}{v_0}), θ = co s − 1 ( v 0 v 0 x ) , θ = c o s − 1 ( 30 m s 36.05 m s ) = 33. 7 ∘ . \theta=cos^{-1}(\dfrac{30\ \dfrac{m}{s}}{36.05\ \dfrac{m}{s}})=33.7^{\circ}. θ = co s − 1 ( 36.05 s m 30 s m ) = 33. 7 ∘ . Let's first find the time that the ball takes to reach its maximum height:
v y = v 0 s i n θ − g t , v_y=v_0sin\theta-gt, v y = v 0 s in θ − g t , 0 = v 0 s i n θ − g t , 0=v_0sin\theta-gt, 0 = v 0 s in θ − g t , t = v 0 s i n θ g . t=\dfrac{v_0sin\theta}{g}. t = g v 0 s in θ . Finally, we can find the total time of the flight of the ball:
t f l i g h t = 2 t = 2 v 0 s i n θ g , t_{flight}=2t=\dfrac{2v_0sin\theta}{g}, t f l i g h t = 2 t = g 2 v 0 s in θ , t f l i g h t = 2 ⋅ 36.05 m s ⋅ s i n 33. 7 ∘ 9.8 m s 2 = 4.08 s . t_{flight}=\dfrac{2\cdot36.05\ \dfrac{m}{s}\cdot sin33.7^{\circ}}{9.8\ \dfrac{m}{s^2}}=4.08\ s. t f l i g h t = 9.8 s 2 m 2 ⋅ 36.05 s m ⋅ s in 33. 7 ∘ = 4.08 s . (c) We can find the range as follows:
x = v 0 x t f l i g h t = 30 m s ⋅ 4.08 s = 122.4 m . x=v_{0x}t_{flight}=30\ \dfrac{m}{s}\cdot4.08\ s=122.4\ m. x = v 0 x t f l i g h t = 30 s m ⋅ 4.08 s = 122.4 m .
Comments