Question #176297

A guitar string 60cm long has a linear mass density of 6.50x10^-3kg/m. If this string plays a fundamental frequency of 220Hz, determine the:

i) tension in the string

ii) frequency and wavelength of the 2nd, 3rd and 4th harmonics.


1
Expert's answer
2021-03-29T08:59:12-0400

(a) We can find the tension in the string from the formula:


fn=n2LTμ,f_n=\dfrac{n}{2L}\sqrt{\dfrac{T}{\mu}},f1=12LTμ,f_1=\dfrac{1}{2L}\sqrt{\dfrac{T}{\mu}},T=4L2f12μ,T=4L^2f_1^2\mu,T=4(0.6 m)2(220 Hz)26.5103 kgm=453 N.T=4\cdot(0.6\ m)^2\cdot(220\ Hz)^2\cdot6.5\cdot10^{-3}\ \dfrac{kg}{m}=453\ N.

(b) Let's first find the frequency of the 2nd, 3rd and 4th harmonics:


f2=220.6 m453 N6.5103 kgm=440 Hz,f_2=\dfrac{2}{2\cdot0.6\ m}\sqrt{\dfrac{453\ N}{6.5\cdot10^{-3}\ \dfrac{kg}{m}}}=440\ Hz,f3=320.6 m453 N6.5103 kgm=660 Hz,f_3=\dfrac{3}{2\cdot0.6\ m}\sqrt{\dfrac{453\ N}{6.5\cdot10^{-3}\ \dfrac{kg}{m}}}=660\ Hz,f4=420.6 m453 N6.5103 kgm=880 Hz.f_4=\dfrac{4}{2\cdot0.6\ m}\sqrt{\dfrac{453\ N}{6.5\cdot10^{-3}\ \dfrac{kg}{m}}}=880\ Hz.


Let's find the velocity of the wave in the string:


v=Tμ=453 N6.5103 kgm=264 ms.v=\sqrt{\dfrac{T}{\mu}}=\sqrt{\dfrac{453\ N}{6.5\cdot10^{-3}\ \dfrac{kg}{m}}}=264\ \dfrac{m}{s}.

Finally, we can find the wavelength of the 2nd, 3rd and 4th harmonics:


λ2=vf2=264 ms440 Hz=0.6 m,\lambda_2=\dfrac{v}{f_2}=\dfrac{264\ \dfrac{m}{s}}{440\ Hz}=0.6\ m,λ3=vf3=264 ms660 Hz=0.4 m,\lambda_3=\dfrac{v}{f_3}=\dfrac{264\ \dfrac{m}{s}}{660\ Hz}=0.4\ m,λ4=vf4=264 ms880 Hz=0.3 m.\lambda_4=\dfrac{v}{f_4}=\dfrac{264\ \dfrac{m}{s}}{880\ Hz}=0.3\ m.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS