(a) We can find the tension in the string from the formula:
f n = n 2 L T μ , f_n=\dfrac{n}{2L}\sqrt{\dfrac{T}{\mu}}, f n = 2 L n μ T , f 1 = 1 2 L T μ , f_1=\dfrac{1}{2L}\sqrt{\dfrac{T}{\mu}}, f 1 = 2 L 1 μ T , T = 4 L 2 f 1 2 μ , T=4L^2f_1^2\mu, T = 4 L 2 f 1 2 μ , T = 4 ⋅ ( 0.6 m ) 2 ⋅ ( 220 H z ) 2 ⋅ 6.5 ⋅ 1 0 − 3 k g m = 453 N . T=4\cdot(0.6\ m)^2\cdot(220\ Hz)^2\cdot6.5\cdot10^{-3}\ \dfrac{kg}{m}=453\ N. T = 4 ⋅ ( 0.6 m ) 2 ⋅ ( 220 Hz ) 2 ⋅ 6.5 ⋅ 1 0 − 3 m k g = 453 N . (b) Let's first find the frequency of the 2nd, 3rd and 4th harmonics:
f 2 = 2 2 ⋅ 0.6 m 453 N 6.5 ⋅ 1 0 − 3 k g m = 440 H z , f_2=\dfrac{2}{2\cdot0.6\ m}\sqrt{\dfrac{453\ N}{6.5\cdot10^{-3}\ \dfrac{kg}{m}}}=440\ Hz, f 2 = 2 ⋅ 0.6 m 2 6.5 ⋅ 1 0 − 3 m k g 453 N = 440 Hz , f 3 = 3 2 ⋅ 0.6 m 453 N 6.5 ⋅ 1 0 − 3 k g m = 660 H z , f_3=\dfrac{3}{2\cdot0.6\ m}\sqrt{\dfrac{453\ N}{6.5\cdot10^{-3}\ \dfrac{kg}{m}}}=660\ Hz, f 3 = 2 ⋅ 0.6 m 3 6.5 ⋅ 1 0 − 3 m k g 453 N = 660 Hz , f 4 = 4 2 ⋅ 0.6 m 453 N 6.5 ⋅ 1 0 − 3 k g m = 880 H z . f_4=\dfrac{4}{2\cdot0.6\ m}\sqrt{\dfrac{453\ N}{6.5\cdot10^{-3}\ \dfrac{kg}{m}}}=880\ Hz. f 4 = 2 ⋅ 0.6 m 4 6.5 ⋅ 1 0 − 3 m k g 453 N = 880 Hz .
Let's find the velocity of the wave in the string:
v = T μ = 453 N 6.5 ⋅ 1 0 − 3 k g m = 264 m s . v=\sqrt{\dfrac{T}{\mu}}=\sqrt{\dfrac{453\ N}{6.5\cdot10^{-3}\ \dfrac{kg}{m}}}=264\ \dfrac{m}{s}. v = μ T = 6.5 ⋅ 1 0 − 3 m k g 453 N = 264 s m . Finally, we can find the wavelength of the 2nd, 3rd and 4th harmonics:
λ 2 = v f 2 = 264 m s 440 H z = 0.6 m , \lambda_2=\dfrac{v}{f_2}=\dfrac{264\ \dfrac{m}{s}}{440\ Hz}=0.6\ m, λ 2 = f 2 v = 440 Hz 264 s m = 0.6 m , λ 3 = v f 3 = 264 m s 660 H z = 0.4 m , \lambda_3=\dfrac{v}{f_3}=\dfrac{264\ \dfrac{m}{s}}{660\ Hz}=0.4\ m, λ 3 = f 3 v = 660 Hz 264 s m = 0.4 m , λ 4 = v f 4 = 264 m s 880 H z = 0.3 m . \lambda_4=\dfrac{v}{f_4}=\dfrac{264\ \dfrac{m}{s}}{880\ Hz}=0.3\ m. λ 4 = f 4 v = 880 Hz 264 s m = 0.3 m .
Comments