Question #171657

a canon ball was fired at an angle of 30 degrees with the height of 50m above the ground. If the initial horizontal velocity is 100 m/s determine the ff.


a.how long it will stay in the air


b.the horizontal distance that it will travel


c.finds its final velocity


1
Expert's answer
2021-03-16T11:36:51-0400

Let's first find the initial velocity of the canon ball:


vx=v0cosθ,v_x=v_0cos\theta,v0=vxcosθ=100 mscos30=115.5 ms.v_0=\dfrac{v_x}{cos\theta}=\dfrac{100\ \dfrac{m}{s}}{cos30^{\circ}}=115.5\ \dfrac{m}{s}.

(a) We can find the time flight of the canon ball from the kinematic equation:


y=y0+v0yt12gt2,y=y_0+v_{0y}t-\dfrac{1}{2}gt^2,0=50+115.5sin30t129.8t2,0=50+115.5\cdot sin30^{\circ}t-\dfrac{1}{2}\cdot9.8t^2,4.9t257.75t50=0.4.9t^2-57.75t-50=0.

This quadratic equation has two roots: t1=12.6 st_1=12.6\ s and t2=0.81 st_2=-0.81\ s. Since time can't be negative the correct answer is t=12.6 st=12.6\ s.

(b) We can find the horizontal distance that it will travel from the kinematic equation:


x=v0tcosθ=115.5 ms12.6 scos30=1260 m.x=v_0tcos\theta=115.5\ \dfrac{m}{s}\cdot12.6\ s\cdot cos30^{\circ}=1260\ m.

(c) The initial horizontal velocity remains unchanged during the flight. Let's find the vertical velocity of the canon ball:


vy=v0gt=09.8 ms212.6 s=123.48 ms.v_y=v_0-gt=0-9.8\ \dfrac{m}{s^2}\cdot12.6\ s=-123.48\ \dfrac{m}{s}.

The sign minus means that the vertical velocity directed downward.

Finally, we can find the final velocity of the canon ball from the Pythagorean theorem:


v=vx2+vy2=(100 ms)2+(123.48 ms)2=159 ms.v=\sqrt{v_x^2+v_y^2}=\sqrt{(100\ \dfrac{m}{s})^2+(-123.48\ \dfrac{m}{s})^2}=159\ \dfrac{m}{s}.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS