Question #171603

Calculate the electric field (magnitude and direction) at the upper right corner of a square 1.22 m

m on a side if the other three corners are occupied by 2.15×10−6 C

C charges. Assume that the positive x-axis is directed to the right.



1
Expert's answer
2021-03-14T19:49:32-0400

Let's consider the square ABCD. The three corners of the square (B, C and D) are occupied by the charges of magnitude 2.15106 C2.15\cdot10^{-6}\ C. We are searching for the magnitude and direction of the electric field at corner A. Let's find the magnitude of the electric fields at B, C and D:


EB=kQBr2=9109 Nm2C22.15106 C(1.22 m)2=13000 Vm,E_B=\dfrac{kQ_B}{r^2}=\dfrac{9\cdot10^9\ \dfrac{Nm^2}{C^2}\cdot2.15\cdot10^{-6}\ C}{(1.22\ m)^2}=13000\ \dfrac{V}{m},EC=kQC(r2)2=9109 Nm2C22.15106 C(1.22 m2)2=6500 Vm,E_C=\dfrac{kQ_C}{(r\sqrt{2})^2}=\dfrac{9\cdot10^9\ \dfrac{Nm^2}{C^2}\cdot2.15\cdot10^{-6}\ C}{(1.22\ m\cdot\sqrt{2})^2}=6500\ \dfrac{V}{m},ED=kQDr2=9109 Nm2C22.15106 C(1.22 m)2=13000 Vm.E_D=\dfrac{kQ_D}{r^2}=\dfrac{9\cdot10^9\ \dfrac{Nm^2}{C^2}\cdot2.15\cdot10^{-6}\ C}{(1.22\ m)^2}=13000\ \dfrac{V}{m}.

Finally, we can find the net electric field at A:


EA=EBcosθ+EC+EDcosθ.E_A=E_Bcos\theta+E_C+E_Dcos\theta.

Find the angle from the geometry:


cosθ=rr2,cos\theta=\dfrac{r}{r\sqrt{2}},θ=cos1(12)=45.\theta=cos^{-1}(\dfrac{1}{\sqrt{2}})=45^{\circ}.

Finally, we get:


EA=13000 Vmcos45+6500 Vm+13000 Vmcos45=24885 Vm.E_A=13000\ \dfrac{V}{m}\cdot cos45^{\circ}+6500\ \dfrac{V}{m}+13000\ \dfrac{V}{m}\cdot cos45^{\circ}=24885\ \dfrac{V}{m}.

Answer:

EA=24885 Vm.E_A=24885\ \dfrac{V}{m}.

θ=45.\theta=45^{\circ}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS