Question #169230

2. An object is projected 60 ⁰ from the ground with an initial velocity of 24.5 m/s. Find the (a) Total time of Flight (b) Range (c) Maximum height


1
Expert's answer
2021-03-08T08:26:13-0500

(a) Let's first find the time that the object takes to reach the maximum height:


vy=v0sinθgt,v_y=v_0sin\theta-gt,0=v0sinθgt,0=v_0sin\theta-gt,t=v0sinθg.t=\dfrac{v_0sin\theta}{g}.

Then, the total time of flight can be found as follows:


tflight=2t=2v0sinθg,t_{flight}=2t=\dfrac{2v_0sin\theta}{g},tflight=224.5 mssin609.8 ms2=4.33 s.t_{flight}=\dfrac{2\cdot24.5\ \dfrac{m}{s}\cdot sin60^{\circ}}{9.8\ \dfrac{m}{s^2}}=4.33\ s.

(b) We can find the range of the object from the kinematic equation:


x=v0tflightcosθ=24.5 ms4.33 scos60=53.04 m.x=v_0t_{flight}cos\theta=24.5\ \dfrac{m}{s}\cdot4.33\ s\cdot cos60^{\circ}=53.04\ m.

(c) We can find the maximum height attained by the object from the kinematic equation:


ymax=v0sinθv0sinθg12g(v0sinθg)2,y_{max}=v_0sin\theta\cdot\dfrac{v_0sin\theta}{g}-\dfrac{1}{2}g(\dfrac{v_0sin\theta}{g})^2,ymax=v02sin2θ2g,y_{max}=\dfrac{v_0^2sin^2\theta}{2g},ymax=(24.5 ms)2sin26029.8 ms2=22.97 m.y_{max}=\dfrac{(24.5\ \dfrac{m}{s})^2sin^260^{\circ}}{2\cdot9.8\ \dfrac{m}{s^2}}=22.97\ m.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS