Question #169143

The acceleration of a bus is given by 𝑎𝑥(𝑡) = (1.2 m/s3) t.

(a) If the bus’ velocity at time t=1.0 s is

5.0 m/s, what is its velocity at time t=2.0 s?

(b) If the bus’ position at time t=1.0 s is 6.0 m, what is

its position at time t=2.0 s?


1
Expert's answer
2021-03-08T08:27:25-0500

(a) Acceleration is the derivative of the velocity with respect to time:


a=dvdt.a=\dfrac{dv}{dt}.

Then, we can find the velocity of the bus by integrating ax(t)a_x(t) over time:


v0vdv=0tadt,\displaystyle\intop_{v_0}^v dv=\displaystyle\intop_{0}^t adt,vv0=1.20ttdt,v-v_0=1.2\displaystyle\intop_{0}^t tdt,v=v0+0.6t2.v=v_0+0.6t^2.

Let's first find v0v_0 at t=1.0 s:


v0=v0.6t2=5ms0.6(1)2=4.4 ms.v_0=v-0.6t^2=5\dfrac{m}{s}-0.6\cdot(1)^2=4.4\ \dfrac{m}{s}.

Finally, we can find velocity of the bus at t=2.0 s:


v(t=2 s)=4.4 ms+0.6(2 s)2=6.8 ms.v(t=2\ s)=4.4\ \dfrac{m}{s}+0.6\cdot(2\ s)^2=6.8\ \dfrac{m}{s}.

(b) Velocity is the derivative of the position with respect to time:


v=dxdt.v=\dfrac{dx}{dt}.

Then, we can find the position of the bus by integrating vx(t)v_x(t) over time:


x0xdx=0tvdt,\displaystyle\intop_{x_0}^x dx=\displaystyle\intop_{0}^t vdt,xx0=0tv0dt+0t0.6t2dt,x-x_0=\displaystyle\intop_{0}^t v_0dt+\displaystyle\intop_{0}^t 0.6t^2dt,x=x0+v0t+0.2t3.x=x_0+v_0t+0.2t^3.

Let's first find the inititial positon of the bus at t=1.0 s:


x0=6.0 m4.4 ms1 s0.2(1 s)3=1.4 m.x_0=6.0\ m-4.4\ \dfrac{m}{s}\cdot1\ s-0.2\cdot(1\ s)^3=1.4\ m.

Finally, we can find position of the bus at t=2.0 s:


x(t=2 s)=1.4 m+4.4 ms2 s+0.2(2 s)3=11.8 m.x(t=2\ s)=1.4\ m+4.4\ \dfrac{m}{s}\cdot2\ s+0.2\cdot(2\ s)^3=11.8\ m.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS