Question #169138

An object moves along the x axis according to the equation 𝑥 = 3.00𝑡

2 − 2.00𝑡 + 3.00,

where x is in meters and t is in seconds. Determine (a) the average speed between t = 2.00 s

and t = 3.00 s, (b) the instantaneous speed at t = 2.00 s and at t = 3.00 s, (c) the average

acceleration between t = 2.00 s and t = 3.00 s, and (d) the instantaneous acceleration at t =

2.00 s and t = 3.00 s. (e) At what time is the object at rest?


1
Expert's answer
2021-03-08T08:27:46-0500

(a) Let's first find the position of the object at t=2 st=2\ s and t=3 st=3\ s:


x1(t=2 s)=3.0(2)22.02+3.0=11 m,x_1(t=2\ s)=3.0\cdot(2)^2-2.0\cdot2+3.0=11\ m,x2(t=3 s)=3.0(3)22.03+3.0=24 m.x_2(t=3\ s)=3.0\cdot(3)^2-2.0\cdot3+3.0=24\ m.

By the definition of the average speed, we have:


vav=x2x1t2t1=24 m11 m3 s2 s=13 ms.v_{av}=\dfrac{x_2-x_1}{t_2-t_1}=\dfrac{24\ m-11\ m}{3\ s-2\ s}=13\ \dfrac{m}{s}.

(b) The speed is the derivative of the position of the object with respect to time:


v=dxdt=ddt(3t22t+3)=6t2.v=\dfrac{dx}{dt}=\dfrac{d}{dt}(3t^2-2t+3)=6t-2.

Let's find the instantaneous speed at t=2 st=2\ s:


v1(t=2 s)=622=10 ms.v_1(t=2\ s)=6\cdot2-2=10\ \dfrac{m}{s}.

Let's find the instantaneous speed at t=3 st=3\ s:


v2(t=3 s)=632=16 ms.v_2(t=3\ s)=6\cdot3-2=16\ \dfrac{m}{s}.

(c) By the definition of the average acceleration, we have:


aavg=v2v1t2t1=16 ms10 ms3 s2 s=6 ms2.a_{avg}=\dfrac{v_2-v_1}{t_2-t_1}=\dfrac{16\ \dfrac{m}{s}-10\ \dfrac{m}{s}}{3\ s-2\ s}=6\ \dfrac{m}{s^2}.

(d) The acceleration is the derivative of the speed of the object with respect to time:


a=dvdt=ddt(6t2)=6 ms2.a=\dfrac{dv}{dt}=\dfrac{d}{dt}(6t-2)=6\ \dfrac{m}{s^2}.

As we can see from the calculations, at t=2 st=2\ s and at t=3 st=3\ s the acceleration remains constant and equals 6 ms26\ \dfrac{m}{s^2}.

(e) The object is at rest when v=0v=0 :


6t2=0,6t-2=0,t=26=0.33 s.t=\dfrac{2}{6}=0.33\ s.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS