Question #168948

In an elastic collision, a 400-kg bumper car collides directly from behind with a second, identical bumper car that is traveling in the same direction. The initial speed of the leading bumper car is 5.60 m/s and that of the trailing car is 6.00 m/s. Assuming that the mass of the drivers is much, much less than that of the bumper cars, what are their final speeds?


vleading_bumper_car =

vtrailing_bumper_car =



1
Expert's answer
2021-03-08T08:29:18-0500

Let the mass of the leading bumper car be m1m_1 and the mass of the trailing bumper car be m2m_2. Let the initial speed of the leading bumper car be u1u_1 and the initial speed of the trailing bumper car be u2u_2. From the law of conservation of momentum, we have:


m1u1+m2u2=m1v1+m2v2.(1)m_1u_1+m_2u_2=m_1v_1+m_2v_2. (1)

Since collision is elastic, kinetic energy is conserved and we can write:


12m1u12+12m2u22=12m1v12+12m2v22.(2)\dfrac{1}{2}m_1u_1^2+\dfrac{1}{2}m_2u_2^2=\dfrac{1}{2}m_1v_1^2+\dfrac{1}{2}m_2v_2^2. (2)

Let’s rearrange equations (1) and (2):


m1(u1v1)=m2(v2u2),(3)m_1(u_1-v_1)=m_2(v_2-u_2), (3)m1(u12v12)=m2(v22u22).(4)m_1(u_1^2-v_1^2)=m_2(v_2^2-u_2^2). (4)

Let’s divide equation (4) by equation (3):


(u1v1)(u1+v1)u1v1=(v2u2)(v2+u2)v2u2,\dfrac{(u_1-v_1)(u_1+v_1)}{u_1-v_1}=\dfrac{(v_2-u_2)(v_2+u_2)}{v_2-u_2},u1+v1=u2+v2.(5)u_1+v_1=u_2+v_2. (5)

Let's express v2v_2 from the equation (5) in terms of u1u_1u2u_2 and v1v_1:


v2=u1u2+v1.(6)v_2=u_1-u_2+v_1. (6)

Let’s substitute equation (6) into equation (3). After simplification, we get:


(m1m2)u1+2m2u2=(m1+m2)v1.(m_1-m_2)u_1+2m_2u_2=(m_1+m_2)v_1.

From this equation we can find the final speed of the leading bumper car, v1v_1:


v1=(m1m2)(m1+m2)u1+2m2(m1+m2)u2,v_1=\dfrac{(m_1-m_2)}{(m_1+m_2)}u_1+\dfrac{2m_2}{(m_1+m_2)}u_2,v1=(400 kg400 kg)(400 kg+400 kg)5.6 ms+2400 kg(400 kg+400 kg)6 ms,v_1=\dfrac{(400\ kg-400\ kg)}{(400\ kg+400\ kg)}\cdot5.6\ \dfrac{m}{s}+\dfrac{2\cdot400\ kg}{(400\ kg+400\ kg)}\cdot6\ \dfrac{m}{s},v1=6 ms.v_1=6\ \dfrac{m}{s}.

The sign plus means that the leading bumper car moves to the right after collision.

Substituting v1v_1into the equation (6) we can find the final speed of the trailing bumper car, v2v_2:


v2=2m1(m1+m2)u1+(m2m1)(m1+m2)u2,v_2=\dfrac{2m_1}{(m_1+m_2)}u_1+\dfrac{(m_2-m_1)}{(m_1+m_2)}u_2,v2=2400 kg(400 kg+400 kg)5.6 ms+(400 kg400 kg)(400 kg+400 kg)6 ms,v_2=\dfrac{2\cdot400\ kg}{(400\ kg+400\ kg)}\cdot5.6\ \dfrac{m}{s}+\dfrac{(400\ kg-400\ kg)}{(400\ kg+400\ kg)}\cdot6\ \dfrac{m}{s},v2=5.6 ms.v_2=5.6\ \dfrac{m}{s}.

The sign plus means that the trailing bumper car moves to the right after collision.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Dominick
02.04.21, 04:38

Thank you for the help.

LATEST TUTORIALS
APPROVED BY CLIENTS