Question #168936

A 60.0-kg skier with an initial speed of 12.0 m/s coasts up a 2.50-m-high rise


a. Find her final speed at the top, given that the coefficient of friction between her skis and the snow is 0.0800. (Hint: Find the distance traveled up the incline assuming a straight-line path as shown in the figure.)

b. How much work does friction do on the skier?


1
Expert's answer
2021-03-14T19:15:46-0400


(a) Let's apply the law of conservation of energy:


KEi+PEi+WNC=KEf+PEf,KE_i+PE_i+W_{NC}=KE_f+PE_f,12mvi2+0+(Ffrd)=12mvf2+mgh.\dfrac{1}{2}mv_i^2+0+(-F_{fr}d)=\dfrac{1}{2}mv_f^2+mgh.

We can find the force of friction as follows:


Ffr=μkN=μkmgcosθ.F_{fr}=\mu_kN=\mu_kmgcos\theta.

We can find the distance traveled up the incline from the geometry:


sinθ=hd,sin\theta=\dfrac{h}{d},d=hsinθ.d=\dfrac{h}{sin\theta}.

Then, we get:


12mvi2μkmgcosθhsinθ=12mvf2+mgh,\dfrac{1}{2}mv_i^2-\mu_kmgcos\theta\cdot\dfrac{h}{sin\theta}=\dfrac{1}{2}mv_f^2+mgh,vf=vi22gh(μkcotθ+1),v_f=\sqrt{v_i^2-2gh(\mu_k cot\theta+1)},vf=(12 ms2)229.8 ms22.5 m(0.08cot35+1),v_f=\sqrt{(12\ \dfrac{m}{s^2})^2-2\cdot9.8\ \dfrac{m}{s^2}\cdot2.5\ m\cdot(0.08\cdot cot35^{\circ}+1)},vf=9.45 ms.v_f=9.45\ \dfrac{m}{s}.

(b) We can find the work done by the friction force on skier as follows:


Wfr=Ffrd=μkmghcotθ,W_{fr}=-F_{fr}d=-\mu_kmghcot\theta,Wfr=0.0860 kg9.8 ms22.5 mcot35=168 N.W_{fr}=-0.08\cdot60\ kg\cdot9.8\ \dfrac{m}{s^2}\cdot2.5\ m\cdot cot35^{\circ}=-168\ N.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS