Question #168615

An auto travels at the rate of 25km/h for 4.0 minutes, then at the 50 km/h at 8.0 minutes and finally at 20 km/h at 2.0 minutes. Find (a) the total distance covered in km and (b) the average speed for the complete trip in m/s.


1
Expert's answer
2021-03-09T15:30:28-0500

(a) Let's first find the total distance traveled:


dtot=d1+d2+d3,d_{tot}=d_1+d_2+d_3,dtot=v1t1+v2t2+v3t3,d_{tot}=v_1t_1+v_2t_2+v_3t_3,

dtot=25 kmh(4 min1 h60 min)+50 kmh(8 min1 h60 min)+20 kmh(2 min1 h60 min)=9 km.d_{tot}=25\ \dfrac{km}{h}\cdot(4\ min\cdot \dfrac{1\ h}{60\ min})+50\ \dfrac{km}{h}\cdot(8\ min\cdot \dfrac{1\ h}{60\ min})+20\ \dfrac{km}{h}\cdot(2\ min\cdot \dfrac{1\ h}{60\ min})=9\ km.

(b) We can find the average speed for the complete trip as follows:


vavg=dtotttot,v_{avg}=\dfrac{d_{tot}}{t_{tot}},vavg=9 km4 min1 h60 min+8 min1 h60 min+2 min1 h60 min,v_{avg}=\dfrac{9\ km}{4\ min\cdot \dfrac{1\ h}{60\ min}+8\ min\cdot \dfrac{1\ h}{60\ min}+2\ min\cdot \dfrac{1\ h}{60\ min}},vavg=38.57 kmh1000 m1 km1 h3600 s=10.71 ms.v_{avg}=38.57\ \dfrac{km}{h}\cdot\dfrac{1000\ m}{1\ km}\cdot\dfrac{1\ h}{3600\ s}=10.71\ \dfrac{m}{s}.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS