Question #167852

Hulk is helping Natasha pull a 67 - kg box of weapons up a39° inclined plane with a velocity of 6.5 m/s. Hulk is pulling it with a force of 574 N parallel to the 6.19 m incline. The coefficient of kinetic friction is 0.39. What is the speed of the crate at the end of the incline?


1
Expert's answer
2021-03-03T11:26:08-0500

Let's first apply the Newton's Second Law of Motion in projections on axis xx and yy:


FpullmgsinθFfr=ma,F_{pull}-mgsin\theta-F_{fr}=ma,Nmgcosθ=0.N-mgcos\theta=0.

Let's rewrite our equations:


FpullmgsinθμkN=ma,F_{pull}-mgsin\theta-\mu_kN=ma,N=mgcosθ.N=mgcos\theta.

Let's substitute NN into the previous equation and find the acceleration of the box:


a=Fpullmgsinθμkmgcosθm=Fpullmg(sinθ+μkcosθ)m,a=\dfrac{F_{pull}-mgsin\theta-\mu_kmgcos\theta}{m}=\dfrac{F_{pull}-mg(sin\theta+\mu_kcos\theta)}{m},a=574 N67 kg9.8 ms2(sin39+0.39cos39)67 kg,a=\dfrac{574\ N-67\ kg\cdot9.8\ \dfrac{m}{s^2}\cdot(sin39^{\circ}+0.39\cdot cos39^{\circ})}{67\ kg},a=0.804 ms2.a=0.804\ \dfrac{m}{s^2}.

Finally, we can find the final speed of the box at the end of the incline from the kinematic equation:


vf2=v02+2as,v_f^2=v_0^2+2as,vf=v02+2as,v_f=\sqrt{v_0^2+2as},vf=(6.5 ms)2+20.804 ms26.19 m=7.22 ms.v_f=\sqrt{(6.5\ \dfrac{m}{s})^2+2\cdot0.804\ \dfrac{m}{s^2}\cdot6.19\ m}=7.22\ \dfrac{m}{s}.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS