Question #161222

. A 1.75-kg mass attached to a horizontally mounted spring moves as function of time as

follows :


x = 4cos (1.331 t + π/5)


Where distance is measured in meters and time in seconds. Assume it to be a free oscillator.

a) What is the phase, initial phase, amplitude, frequency, angular frequency, and period of

this motion?


b) What is the equation of the velocity of this particle?


c) What is the equation of the acceleration of this particle?


d) What is the spring constant?


e) Obtain the value of the displacement, velocity and acceleration at a time t= 2s.


f) Obtain the maximum value of displacement, velocity and acceleration.


g) What is the total mechanical energy of the oscillator?


h) Obtain the kinetic energy and the potential energy at 1= 1s.​


1
Expert's answer
2021-02-04T13:47:15-0500

(a) Phase: 1.331t+π5.1.331t+\dfrac{\pi}{5}.

Initial phase: ϕ=π5.\phi=\dfrac{\pi}{5}.

Amplitude: A=4A=4.

Frequency can found as follows:


f=ω2π=1.331 rads2π=0.212 Hz.f=\dfrac{\omega}{2\pi}=\dfrac{1.331\ \dfrac{rad}{s}}{2\pi}=0.212\ Hz.

Angular frequency: ω=1.331 rads\omega=1.331\ \dfrac{rad}{s}.

Period can be found as follows:


T=1f=10.212 Hz=4.72 s.T=\dfrac{1}{f}=\dfrac{1}{0.212\ Hz}=4.72\ s.

b)

v(t)=ddtx(t),v(t)=\dfrac{d}{dt}x(t),v(t)=ddt(4cos(1.331t+π5))=1.3314sin(1.331t+π5),v(t)=\dfrac{d}{dt}(4cos(1.331t+\dfrac{\pi}{5}))=-1.331\cdot4sin(1.331t+\dfrac{\pi}{5}),v(t)=5.324sin(1.331t+π5).v(t)=-5.324sin(1.331t+\dfrac{\pi}{5}).

c)

a(t)=ddtv(t),a(t)=\dfrac{d}{dt}v(t),a(t)=ddt(5.324sin(1.331t+π5))=5.3241.331cos(1.331t+π5),a(t)=\dfrac{d}{dt}(-5.324sin(1.331t+\dfrac{\pi}{5}))=-5.324\cdot1.331cos(1.331t+\dfrac{\pi}{5}),a(t)=7.1cos(1.331t+π5).a(t)=-7.1cos(1.331t+\dfrac{\pi}{5}).

d) The spring constant can be found as follows:


ω=km,\omega=\sqrt{\dfrac{k}{m}},k=ω2m=(1.331 rads)21.75 kg=3.1 Nm.k=\omega^2m=(1.331\ \dfrac{rad}{s})^2\cdot1.75\ kg=3.1\ \dfrac{N}{m}.

e)

x(t=2 s)=4 mcos(1.331 rads2 s+π5)=4 m,x(t=2\ s)=4\ m\cdot cos(1.331\ \dfrac{rad}{s}\cdot2\ s+\dfrac{\pi}{5})=4\ m,v(t=2 s)=5.324 mssin(1.331rads2 s+π5)=0.305 ms,v(t=2\ s)=-5.324\ \dfrac{m}{s}\cdot sin(1.331 \dfrac{rad}{s}\cdot2\ s+\dfrac{\pi}{5})=-0.305\ \dfrac{m}{s},a(t=2 s)=7.1ms2cos(1.331 rads2 s+π5)=7.08 ms2.a(t=2\ s)=-7.1\dfrac{m}{s^2}\cdot cos(1.331\ \dfrac{rad}{s}\cdot 2\ s+\dfrac{\pi}{5})=-7.08\ \dfrac{m}{s^2}.

f) The maximum value of displacement will be when cos(1.331t+π5)=1cos(1.331t+\dfrac{\pi}{5})=1:


xmax=4 m.x_{max}=4\ m.

The maximum value of velocity will be when sin(1.331t+π5)=1sin(1.331t+\dfrac{\pi}{5})=1:


vmax=5.324 ms.v_{max}=-5.324\ \dfrac{m}{s}.

The maximum value of acceleration will be when cos(1.331t+π5)=1cos(1.331t+\dfrac{\pi}{5})=1:


amax=7.1 ms2.a_{max}=-7.1\ \dfrac{m}{s^2}.

g) The total mechanical energy of the oscillator can be found as follows:


ME=U+K=12kx2+12mv2,ME=U+K=\dfrac{1}{2}kx^2+\dfrac{1}{2}mv^2,ME=12kA2cos2(ωt+ϕ)+12mA2sin2(ωt+ϕ).ME=\dfrac{1}{2}kA^2cos^2(\omega t+\phi)+\dfrac{1}{2}mA^2sin^2(\omega t+\phi).

Applying trigonometric identity cos2θ+sin2θ=1cos^2\theta+sin^2\theta=1 and ω=km\omega=\sqrt{\dfrac{k}{m}}, we get:


ME=12kA2=123.1 Nm(4 m)2=24.8 J.ME=\dfrac{1}{2}kA^2=\dfrac{1}{2}\cdot 3.1\ \dfrac{N}{m}\cdot(4\ m)^2=24.8\ J.

h)

K(t=1 s)=123.1 Nm(4 m)2cos2(1.331 rads1 s+π5)=24.77 J,K(t=1\ s)=\dfrac{1}{2}\cdot3.1\ \dfrac{N}{m}\cdot(4\ m)^2cos^2(1.331\ \dfrac{rad}{s}\cdot1\ s+\dfrac{\pi}{5})=24.77\ J,U(t=1 s)=121.75 kg(4 m)2sin2(1.331 rads1 s+π5)=0.016 J.U(t=1\ s)=\dfrac{1}{2}\cdot1.75\ kg\cdot(4\ m)^2sin^2(1.331\ \dfrac{rad}{s}\cdot1\ s+\dfrac{\pi}{5})=0.016\ J.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS