Question #161161

A 100g object floats in a liquid of relative density 1.2.calculate

a)mass of the liquid displaced by the object.



1
Expert's answer
2021-02-04T11:43:04-0500

By the definition, the buoyant force is equal to the weight of the liquid displace:


FB=ρliquidVliquidg,F_B=\rho_{liquid}V_{liquid}g,mliquidg=ρliquidVliquidg,m_{liquid}g=\rho_{liquid}V_{liquid}g,mliquid=ρliquidVliquid.m_{liquid}=\rho_{liquid}V_{liquid}.

We can find ρliquid\rho_{liquid} from the definition of relative density:


RD=ρliquidρwater,RD=\dfrac{\rho_{liquid}}{\rho_{water}},ρliquid=RDρwater=1.21000 kgm3=1200 kgm3.\rho_{liquid}=RD\rho_{water}=1.2\cdot1000\ \dfrac{kg}{m^3}=1200\ \dfrac{kg}{m^3}.

Since the floating object displaces the volume of water equivalent to its own volume, we can write:


mliquid=ρliquidVliquid=mliquid=ρliquidVobj.m_{liquid}=\rho_{liquid}V_{liquid}=m_{liquid}=\rho_{liquid}V_{obj}.

Unfortunately, we don't know the volume of the object. Let's suppose that the volume of the object equals 10 cm310\ cm^3.

Then, we get:


mliquid=1200 kgm310 cm3(1 m100 cm)3=1.2102 kg.m_{liquid}=1200\ \dfrac{kg}{m^3}\cdot10\ cm^3\cdot(\dfrac{1\ m}{100\ cm})^3=1.2\cdot10^{-2}\ kg.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS