A 50 x 100 mm timber is used as a column with fixed ends. Determine the minimum length required at which Euler’s formula can be used if E= 10 GPa and critical stress up to proportional limit is 30 MPa. What safe load can be carried with a FS of 2 if the length is 2.5 m
The Euler buckling load is
"P_{cr}=\\frac{\\pi^2EI}{(KL)^2}\\to \\sigma_{cr}A=\\frac{\\pi^2EI}{(KL)^2}"
"L=\\sqrt{\\frac{\\pi^2EI}{K^2\\sigma_{cr}A}}"
"I=\\frac{100\\cdot50^3}{12}=1.04167\\cdot10^6(mm^4)=1.04167\\cdot10^{-6}(m^4)"
"A=100\\cdot50=5000(mm^2)=5\\cdot10^{-3}(m^2)"
"L=\\sqrt{\\frac{\\pi^2EI}{K^2\\sigma_{cr}A}}=\\sqrt{\\frac{3.14^2\\cdot 10\\cdot 10^9\\cdot 1.04167\\cdot10^{-6}}{0.5^2\\cdot 30\\cdot10^6\\cdot 5\\cdot10^{-3}}}=1.65(m)" . Answer
"\\sigma_{cr}=\\frac{\\pi^2EI}{A(KL)^2}=\\frac{3.14^2\\cdot 10\\cdot 10^9\\cdot 1.04167\\cdot10^{-6}}{5\\cdot10^{-3}(0.5\\cdot2.5)^2}=13.1(MPa)"
"P_{cr}=\\sigma_{cr}A=65500(N)=65.5(kN)"
safe load "65.5\/2=32.75(kN)" . Answer
Comments
Leave a comment