For a cylindrical shell
E⋅2πr⋅l=(q/L)lϵ0→E=q2πLϵ0rE\cdot 2\pi r\cdot l=\frac{(q/L)l}{\epsilon_0}\to E=\frac{q}{2\pi L\epsilon_0r}E⋅2πr⋅l=ϵ0(q/L)l→E=2πLϵ0rq
a) q=2πLϵ0rE=2⋅3.14⋅2.4⋅8.85⋅10−12⋅0.07⋅36000=336⋅10−9(C)q=2\pi L \epsilon_0 rE=2\cdot 3.14\cdot 2.4\cdot8.85\cdot10^{-12}\cdot0.07\cdot36000=336\cdot10^{-9}(C)q=2πLϵ0rE=2⋅3.14⋅2.4⋅8.85⋅10−12⋅0.07⋅36000=336⋅10−9(C). Answer
b) According to Gauss's theorem E⋅2πr⋅l=0ϵ0→E=0E\cdot 2\pi r\cdot l=\frac{0}{\epsilon_0}\to E=0E⋅2πr⋅l=ϵ00→E=0. Answer
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments