Let A=5i−6j+4k and B=−3i+8j−2k
a) The dot product is:
(A⋅B)=5⋅(−3)+(−6)⋅8+4⋅(−2)=−71 b) The cross product is:
(A×B)=∣∣i5−3j−68k4−2∣∣==i((−6)⋅(−2)−8⋅4)−j(5⋅(−2)−4⋅(−3))+k(5⋅8−(−6)⋅(−3))==−20i−2j+22k It's magnitude is:
∣(A×B)∣=(−20)2+(−2)2+222≈29.8 c) Combination (A - 2B) is given as
A−2B=5i−6j+4k−2(−3i+8j−2k)=11i−22j+8k Its mabnitude:
∣A−2B∣=(11)2+(−22)2+82≈25.9d) The angle between vectors A and B is given as
θ=arccos(∣A∣⋅∣B∣(A⋅B)) The magnitudes of the vectors are:
∣A∣=52+(−6)2+42≈8.1∣B∣=(−3)2+82+(−2)2≈8.8 Thus, the angle is:
θ=arccos(8.1⋅8.8−71)≈174.9° Answer. a) -71, b) −20i−2j+22k and 29.8, c) 11i−22j+8k and 25.9, d) 174.9°.
Comments