Question #149068
Two vectors A=5i-6j+4k and B=-3i+8j-2k
Find :
a- (A . B)
b- (AxB) and its magnitude
c- (A - 2B) and its magnitude
d- The angle between vectors A and B
1
Expert's answer
2020-12-06T17:19:16-0500

Let A=5i6j+4kA = 5\mathbf i - 6\mathbf j +4\mathbf k  and B=3i+8j2kB= -3 \mathbf i +8\mathbf j -2\mathbf k

a) The dot product is:


(AB)=5(3)+(6)8+4(2)=71(A\cdot B) = 5\cdot (-3) + (-6)\cdot 8 + 4\cdot (-2) = -71

b) The cross product is:


(A×B)=ijk564382==i((6)(2)84)j(5(2)4(3))+k(58(6)(3))==20i2j+22k(A\times B) = \begin{vmatrix} \mathbf i & \mathbf j & \mathbf k \\ 5 & -6 & 4 \\ -3 & 8 & -2 \end{vmatrix} =\\ =\mathbf i ((-6)\cdot(-2) - 8\cdot 4) - \mathbf j (5\cdot (-2)-4\cdot (-3)) + \mathbf k (5\cdot 8-(-6)\cdot (-3)) =\\ = -20 \mathbf i - 2\mathbf j + 22 \mathbf k

It's magnitude is:


(A×B)=(20)2+(2)2+22229.8|(A\times B)| = \sqrt{(-20)^2 +(-2)^2 + 22^2} \approx 29.8

c) Combination (A - 2B) is given as


A2B=5i6j+4k2(3i+8j2k)=11i22j+8kA-2B = 5\mathbf i - 6\mathbf j +4\mathbf k - 2(-3 \mathbf i +8\mathbf j -2\mathbf k ) =11 \mathbf i -22\mathbf j +8\mathbf k

Its mabnitude:


A2B=(11)2+(22)2+8225.9|A-2B| = \sqrt{(11)^2 +(-22)^2 + 8^2} \approx 25.9

d) The angle between vectors A and B is given as


θ=arccos((AB)AB)\theta = \arccos\left(\dfrac{(A\cdot B)}{|A|\cdot |B|} \right)

The magnitudes of the vectors are:


A=52+(6)2+428.1B=(3)2+82+(2)28.8|A| = \sqrt{5^2 +(-6)^2 + 4^2} \approx 8.1\\ |B| = \sqrt{(-3)^2 +8^2 + (-2)^2} \approx 8.8

Thus, the angle is:

θ=arccos(718.18.8)174.9°\theta = \arccos\left(\dfrac{-71}{8.1\cdot 8.8} \right) \approx 174.9\degree

Answer. a) -71, b) 20i2j+22k-20 \mathbf i - 2\mathbf j + 22 \mathbf k and 29.8, c) 11i22j+8k11 \mathbf i -22\mathbf j +8\mathbf k and 25.9, d) 174.9°174.9\degree.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS