Let A = 5 i − 6 j + 4 k A = 5\mathbf i - 6\mathbf j +4\mathbf k A = 5 i − 6 j + 4 k and B = − 3 i + 8 j − 2 k B= -3 \mathbf i +8\mathbf j -2\mathbf k B = − 3 i + 8 j − 2 k
a) The dot product is:
( A ⋅ B ) = 5 ⋅ ( − 3 ) + ( − 6 ) ⋅ 8 + 4 ⋅ ( − 2 ) = − 71 (A\cdot B) = 5\cdot (-3) + (-6)\cdot 8 + 4\cdot (-2) = -71 ( A ⋅ B ) = 5 ⋅ ( − 3 ) + ( − 6 ) ⋅ 8 + 4 ⋅ ( − 2 ) = − 71 b) The cross product is:
( A × B ) = ∣ i j k 5 − 6 4 − 3 8 − 2 ∣ = = i ( ( − 6 ) ⋅ ( − 2 ) − 8 ⋅ 4 ) − j ( 5 ⋅ ( − 2 ) − 4 ⋅ ( − 3 ) ) + k ( 5 ⋅ 8 − ( − 6 ) ⋅ ( − 3 ) ) = = − 20 i − 2 j + 22 k (A\times B) = \begin{vmatrix} \mathbf i & \mathbf j & \mathbf k \\ 5 & -6 & 4 \\ -3 & 8 & -2 \end{vmatrix} =\\ =\mathbf i ((-6)\cdot(-2) - 8\cdot 4) - \mathbf j (5\cdot (-2)-4\cdot (-3)) + \mathbf k (5\cdot 8-(-6)\cdot (-3)) =\\
= -20 \mathbf i - 2\mathbf j + 22 \mathbf k ( A × B ) = ∣ ∣ i 5 − 3 j − 6 8 k 4 − 2 ∣ ∣ = = i (( − 6 ) ⋅ ( − 2 ) − 8 ⋅ 4 ) − j ( 5 ⋅ ( − 2 ) − 4 ⋅ ( − 3 )) + k ( 5 ⋅ 8 − ( − 6 ) ⋅ ( − 3 )) = = − 20 i − 2 j + 22 k It's magnitude is:
∣ ( A × B ) ∣ = ( − 20 ) 2 + ( − 2 ) 2 + 2 2 2 ≈ 29.8 |(A\times B)| = \sqrt{(-20)^2 +(-2)^2 + 22^2} \approx 29.8 ∣ ( A × B ) ∣ = ( − 20 ) 2 + ( − 2 ) 2 + 2 2 2 ≈ 29.8 c) Combination (A - 2B) is given as
A − 2 B = 5 i − 6 j + 4 k − 2 ( − 3 i + 8 j − 2 k ) = 11 i − 22 j + 8 k A-2B = 5\mathbf i - 6\mathbf j +4\mathbf k - 2(-3 \mathbf i +8\mathbf j -2\mathbf k ) =11 \mathbf i -22\mathbf j +8\mathbf k A − 2 B = 5 i − 6 j + 4 k − 2 ( − 3 i + 8 j − 2 k ) = 11 i − 22 j + 8 k Its mabnitude:
∣ A − 2 B ∣ = ( 11 ) 2 + ( − 22 ) 2 + 8 2 ≈ 25.9 |A-2B| = \sqrt{(11)^2 +(-22)^2 + 8^2} \approx 25.9 ∣ A − 2 B ∣ = ( 11 ) 2 + ( − 22 ) 2 + 8 2 ≈ 25.9 d) The angle between vectors A and B is given as
θ = arccos ( ( A ⋅ B ) ∣ A ∣ ⋅ ∣ B ∣ ) \theta = \arccos\left(\dfrac{(A\cdot B)}{|A|\cdot |B|} \right) θ = arccos ( ∣ A ∣ ⋅ ∣ B ∣ ( A ⋅ B ) ) The magnitudes of the vectors are:
∣ A ∣ = 5 2 + ( − 6 ) 2 + 4 2 ≈ 8.1 ∣ B ∣ = ( − 3 ) 2 + 8 2 + ( − 2 ) 2 ≈ 8.8 |A| = \sqrt{5^2 +(-6)^2 + 4^2} \approx 8.1\\
|B| = \sqrt{(-3)^2 +8^2 + (-2)^2} \approx 8.8 ∣ A ∣ = 5 2 + ( − 6 ) 2 + 4 2 ≈ 8.1 ∣ B ∣ = ( − 3 ) 2 + 8 2 + ( − 2 ) 2 ≈ 8.8 Thus, the angle is:
θ = arccos ( − 71 8.1 ⋅ 8.8 ) ≈ 174.9 ° \theta = \arccos\left(\dfrac{-71}{8.1\cdot 8.8} \right) \approx 174.9\degree θ = arccos ( 8.1 ⋅ 8.8 − 71 ) ≈ 174.9° Answer. a) -71, b) − 20 i − 2 j + 22 k -20 \mathbf i - 2\mathbf j + 22 \mathbf k − 20 i − 2 j + 22 k and 29.8, c) 11 i − 22 j + 8 k 11 \mathbf i -22\mathbf j +8\mathbf k 11 i − 22 j + 8 k and 25.9, d) 174.9 ° 174.9\degree 174.9° .
Comments