Let "A = 5\\mathbf i - 6\\mathbf j +4\\mathbf k" and "B= -3 \\mathbf i +8\\mathbf j -2\\mathbf k"
a) The dot product is:
"(A\\cdot B) = 5\\cdot (-3) + (-6)\\cdot 8 + 4\\cdot (-2) = -71" b) The cross product is:
"(A\\times B) = \\begin{vmatrix} \\mathbf i & \\mathbf j & \\mathbf k \\\\ 5 & -6 & 4 \\\\ -3 & 8 & -2 \\end{vmatrix} =\\\\ =\\mathbf i ((-6)\\cdot(-2) - 8\\cdot 4) - \\mathbf j (5\\cdot (-2)-4\\cdot (-3)) + \\mathbf k (5\\cdot 8-(-6)\\cdot (-3)) =\\\\\n= -20 \\mathbf i - 2\\mathbf j + 22 \\mathbf k" It's magnitude is:
"|(A\\times B)| = \\sqrt{(-20)^2 +(-2)^2 + 22^2} \\approx 29.8" c) Combination (A - 2B) is given as
"A-2B = 5\\mathbf i - 6\\mathbf j +4\\mathbf k - 2(-3 \\mathbf i +8\\mathbf j -2\\mathbf k ) =11 \\mathbf i -22\\mathbf j +8\\mathbf k" Its mabnitude:
"|A-2B| = \\sqrt{(11)^2 +(-22)^2 + 8^2} \\approx 25.9"d) The angle between vectors A and B is given as
"\\theta = \\arccos\\left(\\dfrac{(A\\cdot B)}{|A|\\cdot |B|} \\right)" The magnitudes of the vectors are:
"|A| = \\sqrt{5^2 +(-6)^2 + 4^2} \\approx 8.1\\\\\n|B| = \\sqrt{(-3)^2 +8^2 + (-2)^2} \\approx 8.8" Thus, the angle is:
"\\theta = \\arccos\\left(\\dfrac{-71}{8.1\\cdot 8.8} \\right) \\approx 174.9\\degree" Answer. a) -71, b) "-20 \\mathbf i - 2\\mathbf j + 22 \\mathbf k" and 29.8, c) "11 \\mathbf i -22\\mathbf j +8\\mathbf k" and 25.9, d) "174.9\\degree".
Comments
Leave a comment