Answer to Question #149068 in Physics for Hauwa Argando

Question #149068
Two vectors A=5i-6j+4k and B=-3i+8j-2k
Find :
a- (A . B)
b- (AxB) and its magnitude
c- (A - 2B) and its magnitude
d- The angle between vectors A and B
1
Expert's answer
2020-12-06T17:19:16-0500

Let "A = 5\\mathbf i - 6\\mathbf j +4\\mathbf k"  and "B= -3 \\mathbf i +8\\mathbf j -2\\mathbf k"

a) The dot product is:


"(A\\cdot B) = 5\\cdot (-3) + (-6)\\cdot 8 + 4\\cdot (-2) = -71"

b) The cross product is:


"(A\\times B) = \\begin{vmatrix} \\mathbf i & \\mathbf j & \\mathbf k \\\\ 5 & -6 & 4 \\\\ -3 & 8 & -2 \\end{vmatrix} =\\\\ =\\mathbf i ((-6)\\cdot(-2) - 8\\cdot 4) - \\mathbf j (5\\cdot (-2)-4\\cdot (-3)) + \\mathbf k (5\\cdot 8-(-6)\\cdot (-3)) =\\\\\n= -20 \\mathbf i - 2\\mathbf j + 22 \\mathbf k"

It's magnitude is:


"|(A\\times B)| = \\sqrt{(-20)^2 +(-2)^2 + 22^2} \\approx 29.8"

c) Combination (A - 2B) is given as


"A-2B = 5\\mathbf i - 6\\mathbf j +4\\mathbf k - 2(-3 \\mathbf i +8\\mathbf j -2\\mathbf k ) =11 \\mathbf i -22\\mathbf j +8\\mathbf k"

Its mabnitude:


"|A-2B| = \\sqrt{(11)^2 +(-22)^2 + 8^2} \\approx 25.9"

d) The angle between vectors A and B is given as


"\\theta = \\arccos\\left(\\dfrac{(A\\cdot B)}{|A|\\cdot |B|} \\right)"

The magnitudes of the vectors are:


"|A| = \\sqrt{5^2 +(-6)^2 + 4^2} \\approx 8.1\\\\\n|B| = \\sqrt{(-3)^2 +8^2 + (-2)^2} \\approx 8.8"

Thus, the angle is:

"\\theta = \\arccos\\left(\\dfrac{-71}{8.1\\cdot 8.8} \\right) \\approx 174.9\\degree"

Answer. a) -71, b) "-20 \\mathbf i - 2\\mathbf j + 22 \\mathbf k" and 29.8, c) "11 \\mathbf i -22\\mathbf j +8\\mathbf k" and 25.9, d) "174.9\\degree".


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog