(a) We can find the deceleration of the car from the kinematic equation:
"v^2=v_0^2+2ad,""a=\\dfrac{v^2-v_0^2}{2d},""a=\\dfrac{0-(35\\ \\dfrac{mi}{hr}\\cdot \\dfrac{1609.34\\ m}{1\\ mi}\\cdot \\dfrac{1\\ hr}{3600\\ s})^2}{2\\cdot 2.5\\ ft\\cdot \\dfrac{0.3048\\ m}{1\\ ft}}=-160.6\\ \\dfrac{m}{s^2}."
The sign minus means that the car decelerates.
b) We can find time needed to stop the car from the another kinematic equation:
"v=v_0+at,""t=\\dfrac{-v_0}{a}=\\dfrac{-35\\ \\dfrac{mi}{hr}\\cdot \\dfrac{1609.34\\ m}{1\\ mi}\\cdot \\dfrac{1\\ hr}{3600\\ s}}{-160.6\\ \\dfrac{m}{s^2}}=0.1\\ s."Answer:
(a) "a=-160.6\\ \\dfrac{m}{s^2}," car decelerates.
(b) "t=0.1\\ s."
Comments
Leave a comment