Question #148494
A hitter during batting practice hits a ball at 167.2 km/h at an angle of 57.2 degrees to
the horizontal. How high does the ball go?
1
Expert's answer
2020-12-04T07:33:52-0500

Let's write the equation of motion of the ball in vertical direction:


y=v0tsinθ12gt2,(1)y=v_0tsin\theta-\dfrac{1}{2}gt^2, (1)

here, v0=167.2 kmhv_0 = 167.2\ \dfrac{km}{h} is the initial velocity of the ball, tt is the time of flight of the ball, θ=57.2\theta=57.2^{\circ} is the launch angle, yy is the vertical displacement of the ball (or the height)  and g=9.8 ms2g=9.8\ \dfrac{m}{s^2} is the acceleration due to gravity.

Let's first find the time that the ball takes to reach the maximum height from the kinematic equation:


vy=v0sinθgtrise,v_y=v_0sin\theta-gt_{rise},0=v0sinθgtrise,0=v_0sin\theta-gt_{rise},trise=v0sinθg.t_{rise}=\dfrac{v_0sin\theta}{g}.

Then, we can substitute triset_{rise} into the first equation and find the maximum height:


ymax=v0sinθv0sinθg12g(v0sinθg)2,y_{max}=v_0sin\theta\cdot\dfrac{v_0sin\theta}{g}-\dfrac{1}{2}g(\dfrac{v_0sin\theta}{g})^2,ymax=v02sin2θ2g,y_{max}=\dfrac{v_0^2sin^2\theta}{2g},ymax=(167.2 kmh1000 m1 km1 h3600 s)2sin257.229.8 ms2=77.76 m.y_{max}=\dfrac{(167.2\ \dfrac{km}{h}\cdot \dfrac{1000\ m}{1\ km}\cdot \dfrac{1\ h}{3600\ s})^2\cdot sin^257.2^{\circ}}{2\cdot 9.8\ \dfrac{m}{s^2}}=77.76\ m.

Answer:

ymax=77.76 m.y_{max}=77.76\ m.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS