Question #145091
A 20 gram bullet moving horizontally with a velocity of 550 m/s gets imbedded in a 12 kg block hanging by means of a light cord. To what vertical height will the block rise?
1
Expert's answer
2020-11-19T09:18:43-0500

Let's apply the Law of Conservation of Momentum and find the velocity of the combination of block and bullet when the bullet gets embedded in it:


mbulletvbullet+mblockvblock=(mbullet+mblock)v,m_{bullet}v_{bullet}+m_{block}v_{block}=(m_{bullet}+m_{block})v,

here, mbullet=0.02 kgm_{bullet}=0.02\ kg is the mass of the bullet, vbullet=550 msv_{bullet}=550\ \dfrac{m}{s} is the velocity of the bullet before the collision, mblock=12 kgm_{block}=12\ kg is the mass of the block, vblock=0 msv_{block}=0\ \dfrac{m}{s} is the velocity of the block before the collision, vv is the velocity of the combination of block and bullet after the collision.

Then, from this equation we can find vv:


v=mbulletvbullet(mbullet+mblock),v=\dfrac{m_{bullet}v_{bullet}}{(m_{bullet}+m_{block})},v=0.02 kg550 ms(0.02 kg+12 kg)=0.91 ms.v=\dfrac{0.02\ kg\cdot 550\ \dfrac{m}{s}}{(0.02\ kg+12\ kg)}=0.91\ \dfrac{m}{s}.

We can find the vertical height attained by the block from the Law of Conservation of Energy:


KE=PE,KE=PE,12(mbullet+mblock)v2=(mbullet+mblock)gh,\dfrac{1}{2}(m_{bullet}+m_{block})v^2=(m_{bullet}+m_{block})gh,h=v22g=(0.91 ms)229.8 ms2=0.043 m.h=\dfrac{v^2}{2g}=\dfrac{(0.91\ \dfrac{m}{s})^2}{2\cdot 9.8\ \dfrac{m}{s^2}}=0.043\ m.

Answer:

h=0.043 m.h=0.043\ m.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS