Question #142745
if ti=0 and tf=t, The final angular speed given by this equation
ωf =ωi+αt .........................1
where ωi is the angular speed of the rigid object at time t = 0.and the angular displacement is:
θf=θi+ ωi t+1/2 αt2……….(3)
where θi is the angular position of the rigid object at time t = 0
from Equations (1) and (3), Prove the following:

ωf2= ωi2+2α(θf -θi)
θf=θi+1/2 (ωi+ωf )t
1
Expert's answer
2020-11-10T06:52:51-0500

1)

θf=θi+ωit+12αt2θf=θi+ωit+12ωfωitt2θf=θi+ωf+ωi2tθ_f=θ_i+ ω_i t+\frac{1}{2} αt^2\\θ_f=θ_i+ ω_i t+\frac{1}{2}\frac{ω_f -ω_i }{t} t^2\\θ_f=θ_i +\frac{ω_f +ω_i }{2} t

2)


θf=θi+ωf+ωi2t2(θfθi)=(ωf+ωi)t=(ωf+ωi)ωfωiα2α(θfθi)=(ωf2ωi2)θ_f=θ_i +\frac{ω_f +ω_i }{2} t\\2(θ_f-θ_i)=(ω_f +ω_i )t=(ω_f +ω_i )\frac{ω_f -ω_i }{\alpha} \\2\alpha(θ_f-θ_i)=(ω_f ^2-ω_i^2 )


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS