Write the expression for range:
"R=v\\text{ cos}\\theta\\cdot t."The time is
"t=t_{up}+t_{down}.\\\\\\space\\\\\nt_{up}=\\frac{v\\text{ sin}\\theta}{g},\\\\\\space\\\\\nt_{down}=\\sqrt{\\frac{2H}{g}}." The height the water will fall down is
"H=\\frac{gt_{up}^2}{2}+h=\\frac{v^2\\text{sin}^2\\theta}{2g}+h." Thus, the time down becomes
"t_{down}=\\sqrt{\\frac{2\\big(\\frac{v^2\\text{sin}^2\\theta}{2g}+h\\big)}{g}}." Now, express the time from the range (see the first equation):
"t=\\frac{R}{v\\text{ cos}\\theta}=t_{up}+t_{down},\\\\\\space\\\\\n\\frac{R}{v\\text{ cos}\\theta}=\\frac{v\\text{ sin}\\theta}{g}+\\sqrt{\\frac{2\\big(\\frac{v^2\\text{sin}^2\\theta}{2g}+h\\big)}{g}}." All variables are given except the initial velocity. So, we can easily solve this equation:
"v=5.8\\text{ m\/s}."
Comments
Leave a comment