F=F1+F2+F3F=F_1+F_2+F_3F=F1+F2+F3
F1=kq1q20.22=9⋅109⋅2⋅10−9⋅1⋅10−90.22=450⋅10−9(N)F_1=k\frac{q_1q_2}{0.2^2}=9\cdot10^9\cdot\frac{2\cdot10^{-9}\cdot1\cdot10^{-9}}{0.2^2}=450\cdot10^{-9}(N)F1=k0.22q1q2=9⋅109⋅0.222⋅10−9⋅1⋅10−9=450⋅10−9(N)
F2=F1=450⋅10−9(N)F_2=F_1=450\cdot10^{-9}(N)F2=F1=450⋅10−9(N)
F3=kq1q2(0.22+0.22)2=9⋅109⋅2⋅10−9⋅1⋅10−9(0.22+0.22)2=F_3=k\frac{q_1q_2}{(\sqrt{0.2^2+0.2^2})^2}=9\cdot10^9\cdot\frac{2\cdot10^{-9}\cdot1\cdot10^{-9}}{(\sqrt{0.2^2+0.2^2})^2}=F3=k(0.22+0.22)2q1q2=9⋅109⋅(0.22+0.22)22⋅10−9⋅1⋅10−9=
=225⋅10−9(N)=225\cdot10^{-9}(N)=225⋅10−9(N)
F1+F2=2F1⋅cos45°=2⋅450⋅10−9⋅cos45°=F_1+F_2=2F_1\cdot\cos45°=2\cdot450\cdot10^{-9}\cdot\cos45°=F1+F2=2F1⋅cos45°=2⋅450⋅10−9⋅cos45°=
=636⋅10−9(N)=636\cdot10^{-9}(N)=636⋅10−9(N)
F=636⋅10−9+225⋅10−9=861⋅10−9(N)F=636\cdot10^{-9}+225\cdot10^{-9}=861\cdot10^{-9}(N)F=636⋅10−9+225⋅10−9=861⋅10−9(N)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment