The differential equation of oscillation of a simple pendulum
d2θdt2+glsinθ=0\frac{d^2\theta}{dt^2}+\frac{g}{l}\sin\theta=0dt2d2θ+lgsinθ=0
after solution
T=2πlg∑(((2n)!(2n⋅n!))2⋅sin2nθ2).T=2\pi\sqrt{\frac{l}{g}}\sum{((\frac{(2n)!}{(2^n\cdot n!)})^2\cdot \sin^{2n}\frac{\theta}{2})}.T=2πgl∑(((2n⋅n!)(2n)!)2⋅sin2n2θ).
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment