We have that
a=−t2+4ta=-t^2+4ta=−t2+4t .
So,
v=∫adt=−t33+4t22v=\int{adt}=-\frac{t^3}{3}+4\frac{t^2}{2}v=∫adt=−3t3+42t2
and
S=∫vdt=−t412+2t33S=\int{vdt}=-\frac{t^4}{12}+2\frac{t^3}{3}S=∫vdt=−12t4+23t3
S=SmaxS=S_{max}S=Smax at v=0v=0v=0
v=−t33+4t22=0→t=6sv=-\frac{t^3}{3}+4\frac{t^2}{2}=0\to t=6sv=−3t3+42t2=0→t=6s (if t=0t=0t=0 then v=0v=0v=0 )
S=Smax=−t412+2t33=−6412+2633=36mS=S_{max}=-\frac{t^4}{12}+2\frac{t^3}{3}=-\frac{6^4}{12}+2\frac{6^3}{3}=36mS=Smax=−12t4+23t3=−1264+2363=36m
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment