The heat transferred thru the steel and its thermal resistance is
"q=\\frac{2\\pi Lk_s}{\\text{ln}(R_\\text{out}\/R_\\text{in})}(250-T_1),\\\\\\space\\\\\nR_\\text{steel}=\\frac{\\text{ln}(R_\\text{st.out}\/R_\\text{st.in})}{2\\pi Lk_s}." The heat transferred thru the magnesium is
"q=\\frac{2\\pi Lk_m}{\\text{ln}(R_\\text{out}\/R_\\text{in})}(T_1-T_2),\\\\\\space\\\\\nR_\\text{mg}=\\frac{\\text{ln}(R_\\text{mg.out}\/R_\\text{mg.in})}{2\\pi Lk_m}" The heat transferred thru the cork is
"q=\\frac{2\\pi Lk_c}{\\text{ln}(R_\\text{out}\/R_\\text{in})}(T_2-90),\\\\\\space\\\\\nR_\\text{cork}=\\frac{\\text{ln}(R_\\text{cork.out}\/R_\\text{cork.in})}{2\\pi Lk_c}."In these equations, k is the thermal conductivity.
The total heat loss is
"q=\\frac{250-90}{R_\\text{steel}+R_\\text{mag}+R_\\text{cork}}=\\\\\\space\\\\\n=\\frac{250-90}{\\frac{\\text{ln}(R_\\text{s}\/R_\\text{w})}{2\\pi Lk_s}+\\frac{\\text{ln}(R_\\text{m}\/R_\\text{s})}{2\\pi Lk_m}+\\frac{\\text{ln}(R_\\text{c}\/R_\\text{m})}{2\\pi Lk_c}}," where
"R_w=1.049"\\\\\nR_s=1.315"\\\\\nR_m=1.315"+2"=3.315"\\\\\nR_c=3.315"+0.5"=3.815""
Substituting these values, we get
"q=3152.8\\text{ BTU\/hr}."
Now, since we know the total heat and the thermal resistances, we can find temperatures "T_1" and "T_2" using the equation listed in the beginning of the solution:
"T_1=249.96\u00b0\\text{ F},\\\\\nT_2=113.50\u00b0\\text{ F}."
Comments
Plzz i want this ans for my assignment
Leave a comment