Question #119484
A standard 1-in.schedule 40steel pipe carries saturated steam at 250^(@)F . The pipe is lagged (insulated) with a 2-in.layer of 85percent magnesia pipe covering and outside this magnesia there is a 1/2in layer of the cork. The inside temperature of the pipe wall is 249^(@)F and the outside temperature of the cork is 90^(@)F .Thermal conductivities in Btu/ft-h.F are: for steel 26; for magnesia 0.034; for cork 0.03.Calculate (a) the heat loss from 100ft of pipe in Btu per hour; (b) the temperature at the boundaries between metal and magnesia and between magnesia and cork.(For 1-in. schedule 40steel pipe outside diameter is 1.315in and inside diameter is 1.049in )
1
Expert's answer
2020-06-04T09:55:23-0400


The heat transferred thru the steel and its thermal resistance is


q=2πLksln(Rout/Rin)(250T1), Rsteel=ln(Rst.out/Rst.in)2πLks.q=\frac{2\pi Lk_s}{\text{ln}(R_\text{out}/R_\text{in})}(250-T_1),\\\space\\ R_\text{steel}=\frac{\text{ln}(R_\text{st.out}/R_\text{st.in})}{2\pi Lk_s}.

The heat transferred thru the magnesium is

q=2πLkmln(Rout/Rin)(T1T2), Rmg=ln(Rmg.out/Rmg.in)2πLkmq=\frac{2\pi Lk_m}{\text{ln}(R_\text{out}/R_\text{in})}(T_1-T_2),\\\space\\ R_\text{mg}=\frac{\text{ln}(R_\text{mg.out}/R_\text{mg.in})}{2\pi Lk_m}

The heat transferred thru the cork is


q=2πLkcln(Rout/Rin)(T290), Rcork=ln(Rcork.out/Rcork.in)2πLkc.q=\frac{2\pi Lk_c}{\text{ln}(R_\text{out}/R_\text{in})}(T_2-90),\\\space\\ R_\text{cork}=\frac{\text{ln}(R_\text{cork.out}/R_\text{cork.in})}{2\pi Lk_c}.

In these equations, k is the thermal conductivity.

The total heat loss is


q=25090Rsteel+Rmag+Rcork= =25090ln(Rs/Rw)2πLks+ln(Rm/Rs)2πLkm+ln(Rc/Rm)2πLkc,q=\frac{250-90}{R_\text{steel}+R_\text{mag}+R_\text{cork}}=\\\space\\ =\frac{250-90}{\frac{\text{ln}(R_\text{s}/R_\text{w})}{2\pi Lk_s}+\frac{\text{ln}(R_\text{m}/R_\text{s})}{2\pi Lk_m}+\frac{\text{ln}(R_\text{c}/R_\text{m})}{2\pi Lk_c}},

where

Rw=1.049"Rs=1.315"Rm=1.315"+2"=3.315"Rc=3.315"+0.5"=3.815"R_w=1.049"\\ R_s=1.315"\\ R_m=1.315"+2"=3.315"\\ R_c=3.315"+0.5"=3.815"

Substituting these values, we get


q=3152.8 BTU/hr.q=3152.8\text{ BTU/hr}.


Now, since we know the total heat and the thermal resistances, we can find temperatures T1T_1 and T2T_2 using the equation listed in the beginning of the solution:


T1=249.96° F,T2=113.50° F.T_1=249.96°\text{ F},\\ T_2=113.50°\text{ F}.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Shadab khan
01.06.20, 12:55

Plzz i want this ans for my assignment

LATEST TUTORIALS
APPROVED BY CLIENTS