The augmented matrix is
[ 1 2 2 − 1 3 1 2 3 1 1 3 6 8 1 5 ] \begin{bmatrix}
1 & 2& 2 & -1& 3 \\ 1 & 2& 3 & 1& 1\\ 3 & 6& 8 & 1& 5
\end{bmatrix} ⎣ ⎡ 1 1 3 2 2 6 2 3 8 − 1 1 1 3 1 5 ⎦ ⎤ Reduce the system to echelon form:
R 3 → R 3 − 3 R 1 ⟹ [ 1 2 2 − 1 3 1 2 3 1 1 0 0 2 4 − 4 ] R_3\to R_3-3R_1\implies
\begin{bmatrix}
1 & 2& 2 & -1& 3 \\ 1 & 2& 3 & 1& 1\\ 0 & 0& 2 & 4& -4
\end{bmatrix} R 3 → R 3 − 3 R 1 ⟹ ⎣ ⎡ 1 1 0 2 2 0 2 3 2 − 1 1 4 3 1 − 4 ⎦ ⎤
R 2 → R 2 − R 1 ⟹ [ 1 2 2 − 1 3 0 0 1 2 − 2 0 0 2 4 − 4 ] R_2\to R_2-R_1\implies
\begin{bmatrix}
1 & 2& 2 & -1& 3 \\ 0 & 0& 1 & 2& -2\\ 0 & 0& 2 & 4& -4
\end{bmatrix} R 2 → R 2 − R 1 ⟹ ⎣ ⎡ 1 0 0 2 0 0 2 1 2 − 1 2 4 3 − 2 − 4 ⎦ ⎤
R 3 → R 3 − 2 R 2 ⟹ [ 1 2 2 − 1 3 0 0 1 2 − 2 0 0 0 0 0 ] R_3\to R_3-2R_2\implies
\begin{bmatrix}
1 & 2& 2 & -1& 3 \\ 0 & 0& 1 & 2& -2\\ 0 & 0& 0 & 0& 0
\end{bmatrix} R 3 → R 3 − 2 R 2 ⟹ ⎣ ⎡ 1 0 0 2 0 0 2 1 0 − 1 2 0 3 − 2 0 ⎦ ⎤ This corresponds to the system:
z + 2 s − 2 t = 0 , x + 2 y + 2 z − s + 3 t = 0 z+2s-2t=0,x+2y+2z-s+3t=0 z + 2 s − 2 t = 0 , x + 2 y + 2 z − s + 3 t = 0 The system in echelon form has 2 nonzero equations in five unknowns. Hence the system has 5 − 2 = 3 5-2=3 5 − 2 = 3 free variables which are y , s , t y,s,t y , s , t . Thus,
dim W = 3 \dim W=3 dim W = 3 We obtain the basis for W:
i. y = 1 , s = 0 , t = 0 y=1,s=0,t=0 y = 1 , s = 0 , t = 0
v 1 = ( − 2 , 1 , 0 , 0 , 0 ) v_1=(-2,1,0,0,0) v 1 = ( − 2 , 1 , 0 , 0 , 0 ) ii. y = 0 , s = 1 , t = 0 y=0,s=1,t=0 y = 0 , s = 1 , t = 0
v 2 = ( 5 , 0 , − 2 , 1 , 0 ) v_2=(5,0,-2,1,0) v 2 = ( 5 , 0 , − 2 , 1 , 0 ) iii.y = 0 , s = 0 , t = 1 y=0,s=0,t=1 y = 0 , s = 0 , t = 1
v 3 = ( − 7 , 0 , 2 , 0 , 1 ) v_3=(-7,0,2,0,1) v 3 = ( − 7 , 0 , 2 , 0 , 1 ) The set { v 1 , v 2 , v 3 } \{v_1,v_2,v_3\} { v 1 , v 2 , v 3 } is a basis of the solution space W.
Comments