Question #109152
Find dimensions and basis of solution space W for a homogeneous system.
x^2+2y+2z-s+3t=0
x+2y+3z+s+t=0
3x+6y+8z+s+5t=0
1
Expert's answer
2020-04-13T10:16:38-0400

The augmented matrix is


[122131231136815]\begin{bmatrix} 1 & 2& 2 & -1& 3 \\ 1 & 2& 3 & 1& 1\\ 3 & 6& 8 & 1& 5 \end{bmatrix}

Reduce the system to echelon form:


R3R33R1    [122131231100244]R_3\to R_3-3R_1\implies \begin{bmatrix} 1 & 2& 2 & -1& 3 \\ 1 & 2& 3 & 1& 1\\ 0 & 0& 2 & 4& -4 \end{bmatrix}

R2R2R1    [122130012200244]R_2\to R_2-R_1\implies \begin{bmatrix} 1 & 2& 2 & -1& 3 \\ 0 & 0& 1 & 2& -2\\ 0 & 0& 2 & 4& -4 \end{bmatrix}

R3R32R2    [122130012200000]R_3\to R_3-2R_2\implies \begin{bmatrix} 1 & 2& 2 & -1& 3 \\ 0 & 0& 1 & 2& -2\\ 0 & 0& 0 & 0& 0 \end{bmatrix}

This corresponds to the system:


z+2s2t=0,x+2y+2zs+3t=0z+2s-2t=0,x+2y+2z-s+3t=0

The system in echelon form has 2 nonzero equations in five unknowns. Hence the system has 52=35-2=3 free variables which are y,s,ty,s,t. Thus,


dimW=3\dim W=3

We obtain the basis for W:

i. y=1,s=0,t=0y=1,s=0,t=0


v1=(2,1,0,0,0)v_1=(-2,1,0,0,0)

ii. y=0,s=1,t=0y=0,s=1,t=0


v2=(5,0,2,1,0)v_2=(5,0,-2,1,0)

iii.y=0,s=0,t=1y=0,s=0,t=1


v3=(7,0,2,0,1)v_3=(-7,0,2,0,1)

The set {v1,v2,v3}\{v_1,v_2,v_3\} is a basis of the solution space W.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS