Consider the pendulum:
According to Newton's second law:
"F\\text{ cos}\\theta=mg,\\\\\nF\\text{ sin}\\theta=\\frac{mv^2}{r}=\\frac{mv^2}{l\\text{ sin}\\theta}." The period is:
"T=\\frac{2\\pi r}{v}=\\frac{2\\pi l\\text{ sin}\\theta}{v}." Express speed from the second equation:
"v=\\text{ sin}\\theta\\sqrt{\\frac{Fl}{m}}." Express the tension F from the first eqution:
"F=\\frac{mg}{\\text{ cos}\\theta},\\\\\n\\space\\\\\nv=\\text{ sin}\\theta\\sqrt{\\frac{gl}{\\text{ cos}\\theta}}."
Substitute this speed to the period:
"T=\\frac{2\\pi l\\text{ sin}\\theta}{\\text{ sin}\\theta\\sqrt{\\frac{gl}{\\text{ cos}\\theta}}}=2\\pi\\sqrt{\\frac{l\\text{ cos}\\theta}{g}}." That's a period of a conical pendulum.
Comments
Leave a comment