Given,
E1(z,t)=x^E01cos(kz−(ω)t)
cos(kz−(ω)t)=E01E1(z,t)...(i)
E2(z,t)=y^E02cos(kz−(ω)t+(ψ))
=y^E02(cos((kz−(ω)t)+(ψ)))
=y^E02[cos(kz−(ω)t)cos(ψ)−sin(kz−(ω)t)sin(ψ)]
⇒ sin(kz−(ω)t)sin(ψ)=cos(kz−(ω)t)cos(ψ)−E02E2(z,t)...(ii)
From equation (i) and (ii)
sin(kz−(ω)t)sin(ψ)=E01E1(z,t)cos(ψ)−E02E2(z,t)
Now, squaring both side,
sin2(kz−(ω)t)sin2(ψ)=(E01E1(z,t))2cos2(ψ)+(E02E2(z,t))2−2×E01E1(z,t)cos(ψ)×E02E2(z,t)
Hence, from the above, we can conclude that it is a form of ellipse.
As here the value of E01 and E02 are not given, so we can not conclude about the polarization.
Comments
Leave a comment