Answer to Question #163192 in Optics for Hadden

Question #163192

A string is 0,400m long and has a mass per unit length of 9.00 x 10^-3 kg/m. What must be the tension in the string if it’s second harmonic has the same frequency as the second resonance mode of a 1.75m long pipe open at one end?




1
Expert's answer
2021-02-24T12:50:54-0500

Let's first find the wavelength of the wave in the pipe open at one end:


λ=43Lpipe=431.75 m=2.33 m.\lambda=\dfrac{4}{3}L_{pipe}=\dfrac{4}{3}\cdot1.75\ m=2.33\ m.

Then, we can find the frequency from the wave speed equation:


f=vλ=340 ms2.33 m=146 Hz.f=\dfrac{v}{\lambda}=\dfrac{340\ \dfrac{m}{s}}{2.33\ m}=146\ Hz.

Let's find the fundamental frequency of the string:


f1=f22=146 Hz2=73 Hz.f_1=\dfrac{f_2}{2}=\dfrac{146\ Hz}{2}=73\ Hz.

We can find the tension in the string from the formula:


f1=12LTμ,f_1=\dfrac{1}{2L}\sqrt{\dfrac{T}{\mu}},T=4L2μf12,T=4L^2\mu f_1^2,T=4(0.4 m)29.0103 kgm(73 Hz)2=30.7 N.T=4\cdot(0.4\ m)^2\cdot9.0\cdot10^{-3}\ \dfrac{kg}{m}\cdot(73\ Hz)^2=30.7\ N.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment