Answer to Question #163179 in Optics for Ada

Question #163179

A string on a cello vibrates in the first normal mode with a frequency of  220 Hz. The vibration segment is 70 cm long and has a mass of 1.20 grams

(a) find the tension in the string 

(b) Determine the frequency of vibration when the string vibrates in three segments.



1
Expert's answer
2021-02-18T18:56:07-0500

(a) We can find the tension in the string from the formula:


fn=n2LTμ.f_n=\dfrac{n}{2L}\sqrt{\dfrac{T}{\mu}}.

Since, the string on a cello vibrates in the first normal mode, we get:


f1=12LTμ=12LLTm,f_1=\dfrac{1}{2L}\sqrt{\dfrac{T}{\mu}}=\dfrac{1}{2L}\sqrt{\dfrac{LT}{m}},T=4Lmf12,T=4Lmf_1^2,T=40.7 m1.2103 kg(220 Hz)2=163 N.T=4\cdot0.7\ m\cdot1.2\cdot10^{-3}\ kg\cdot(220\ Hz)^2=163\ N.

(b) We can find the frequency of vibration when the string vibrates in three segments from the same formula:


f3=32LLTm=32TLm,f_3=\dfrac{3}{2L}\sqrt{\dfrac{LT}{m}}=\dfrac{3}{2}\sqrt{\dfrac{T}{Lm}},f3=32163 N0.7 m1.2103 kg=660 Hz.f_3=\dfrac{3}{2}\cdot\sqrt{\dfrac{163\ N}{0.7\ m\cdot1.2\cdot10^{-3}\ kg}}=660\ Hz.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment