R = 100 c m R=100 cm R = 100 c m
Sharpness of the rings pattern is the worst when the maxima and minima intermingle.
For the maxima
r 2 = R λ ( 2 k − 1 ) 2 r^2=\frac{R\lambda(2k-1)}{2} r 2 = 2 R λ ( 2 k − 1 )
For the minima
r 2 = k λ R r^2=k\lambda R r 2 = kλ R
So,
k λ 1 R = R λ 2 ( 2 k − 1 ) 2 → k λ 1 = λ 2 ( 2 k − 1 ) 2 k\lambda_1R=\frac{R\lambda_2(2k-1)}{2}\to k\lambda_1=\frac{\lambda_2(2k-1)}{2} k λ 1 R = 2 R λ 2 ( 2 k − 1 ) → k λ 1 = 2 λ 2 ( 2 k − 1 ) , λ 1 = λ , λ 2 = λ 1 + Δ λ = λ + Δ λ \lambda_1=\lambda,\lambda_2=\lambda_1+\Delta\lambda=\lambda+\Delta\lambda λ 1 = λ , λ 2 = λ 1 + Δ λ = λ + Δ λ
k λ = ( λ + Δ λ ) ( 2 k − 1 ) 2 → k Δ λ ≈ λ 2 k\lambda=\frac {(\lambda+\Delta\lambda)(2k-1)}{2}\to k \Delta \lambda \approx\frac{\lambda}{2} kλ = 2 ( λ + Δ λ ) ( 2 k − 1 ) → k Δ λ ≈ 2 λ
k = λ 2 Δ λ = λ 1 2 ( λ 2 − λ 1 ) = 589 2 ( 589.6 − 589 ) ≈ 491 k=\frac{\lambda}{2\Delta\lambda}=\frac{\lambda_1}{2(\lambda_2-\lambda_1)}=\frac{589}{2(589.6-589)}\approx491 k = 2Δ λ λ = 2 ( λ 2 − λ 1 ) λ 1 = 2 ( 589.6 − 589 ) 589 ≈ 491
l = R 2 − ( R − k λ 2 ) 2 = 1 2 − ( 1 − 491 ⋅ 589 ⋅ 1 0 − 9 2 ) 2 ≈ 0.017 m = 17 m m l=\sqrt{R^2-(R-\frac{k\lambda}{2})^2}=\sqrt{1^2-(1-\frac{491\cdot589\cdot10^{-9}}{2})^2}\approx0.017m=17mm l = R 2 − ( R − 2 kλ ) 2 = 1 2 − ( 1 − 2 491 ⋅ 589 ⋅ 1 0 − 9 ) 2 ≈ 0.017 m = 17 mm
Comments