"R=100 cm"
Sharpness of the rings pattern is the worst when the maxima and minima intermingle.
For the maxima
"r^2=\\frac{R\\lambda(2k-1)}{2}"
For the minima
"r^2=k\\lambda R"
So,
"k\\lambda_1R=\\frac{R\\lambda_2(2k-1)}{2}\\to k\\lambda_1=\\frac{\\lambda_2(2k-1)}{2}" , "\\lambda_1=\\lambda,\\lambda_2=\\lambda_1+\\Delta\\lambda=\\lambda+\\Delta\\lambda"
"k\\lambda=\\frac {(\\lambda+\\Delta\\lambda)(2k-1)}{2}\\to k \\Delta \\lambda \\approx\\frac{\\lambda}{2}"
"k=\\frac{\\lambda}{2\\Delta\\lambda}=\\frac{\\lambda_1}{2(\\lambda_2-\\lambda_1)}=\\frac{589}{2(589.6-589)}\\approx491"
"l=\\sqrt{R^2-(R-\\frac{k\\lambda}{2})^2}=\\sqrt{1^2-(1-\\frac{491\\cdot589\\cdot10^{-9}}{2})^2}\\approx0.017m=17mm"
Comments
Leave a comment