As per the given data in the question,
Refractive index of the film=1.34
thickness of the extreme side 0 and t
wavelength of the light (λ)=492nm(\lambda)=492nm
(λ)=492nm
Number of fringes=20
As per the rule of x-ray reflection on the single layer
"2t\\sqrt{n^2\u2212\\sin^2i}-\\dfrac{\\lambda}{2}\u200b=m\u03bb"
n=refractive index of the medium
Light is getting incident normally, so i=0i=0
i=0
So,
"2tn-\\dfrac{\\lambda}{2}=m\\lambda"
"\\Rightarrow t=\\dfrac{m\\lambda+\\dfrac{\\lambda}{2}}{2n}"
"\\Rightarrow t=\\dfrac{20\\times492\\times10^{-9}+246\\times 10^{-9}}{2\\times 1.34}"
"\\Rightarrow t=9931.8\\times10^{-9}m"
"\\Rightarrow t=9.9318\\times 10^{-6}m"
"t=9.93\\mu m"
Comments
The answer is difficult if the length of the film is not given. But if you consider the angle of the film to be very small then the value of 't' is 3.671 * 10^(-6)m
Leave a comment