the Van der Waals equation:
(p+aν2V2)(V−bν)=νRTV3−(RTp+b)νV2+aν2pV−abν3p=0V3−5.9172V2+0.000422V−7.2162⋅10−6=0(p+\frac{a\nu^2}{V^2})(V-b\nu)=\nu RT\\ V^3-(\frac{RT}{p}+b)\nu V^2+\frac{a\nu^2}{p}V-\frac{ab\nu^3}{p}=0\\ V^3-5.9172V^2+0.000422V-7.2162\cdot10^{-6}=0(p+V2aν2)(V−bν)=νRTV3−(pRT+b)νV2+paν2V−pabν3=0V3−5.9172V2+0.000422V−7.2162⋅10−6=0
If we solve that equation, then we get V=5.92713 LV=5.92713 \, LV=5.92713L
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment