The Planck's formula for spectral energy density has the following form:
"\\rho_{\\omega} = \\frac{\\hbar \\omega^3}{\\pi^2 c^3} \\frac{1}{e^{\\frac{\\hbar \\omega}{kT}} - 1}" 1) Rayleigh-Jeans law can be obtained as a low-frequency limit of the Planck's formula:
"\\frac{\\hbar \\omega}{k T} << 1, \\quad e^{\\frac{\\hbar \\omega}{kT}} \\approx 1 + \\frac{\\hbar \\omega}{k T}"
"\\Rightarrow \\quad \\rho_{\\omega} \\approx \\frac{\\hbar \\omega^3}{\\pi^2 c^3} \\frac{1}{\\frac{\\hbar \\omega}{kT}} = \\frac{\\omega^2}{\\pi^2 c^3} kT" 2) in order to derive Wien's law, one should obtain the Planck's formula in terms of a wavelength. This can be done by means of the following transformation:
"\\rho_{\\omega} d\\omega = \\rho_{\\lambda} d\\lambda \\, \\Rightarrow \\, \\rho_{\\lambda} = \\rho_{\\omega} \\left|\\frac{d\\omega}{d\\lambda} \\right|," where we take into account that increase in a frequency means decrease in a wavelength by putting the absolute value. Taking into account that
"\\omega = \\frac{2 \\pi c}{\\lambda}, \\quad d\\omega = - \\frac{2 \\pi c}{\\lambda^2} d\\lambda," we derive
"\\rho_{\\lambda} = 16 \\pi^2 c \\hbar \\frac{1}{\\lambda^5 (e^{\\frac{2\\pi c\\hbar}{kT \\lambda}}-1)}" The maximum value of this function can be obtained from the condition
"\\frac{d \\rho_{\\lambda}}{d\\lambda} = 0" Approximate solution of this equation leads to:
"\\frac{2 \\pi c \\hbar}{k T \\lambda_{max}} = 4.965 \\, \\Rightarrow \\, \\lambda_{max} T = \\frac{2 \\pi c \\hbar}{4.965 k} \\equiv b" 3) finally, Stefan-Boltzmann's law can be obtained by means of calculating the energy density function as
"U = \\int_0^\\infty \\rho_{\\omega} d\\omega = \\frac{\\hbar}{\\pi^2 c^3} \\int_0^\\infty \\frac{\\omega^3 d\\omega}{e^{\\frac{\\hbar \\omega}{kT} }-1} =\\frac{\\pi^2 k^4}{15 c^3 \\hbar^3} T^4 \\equiv \\alpha T^4."
Comments
Leave a comment