The van der Waals' constants a and b are related to the critical temperature "{{T}_{c}}" and pressure "{{p}_{c}}" by
"a=\\frac{27T_{c}^{2}{{R}^{2}}}{64{{p}_{c}}},\\,\\,\\,\\,b=\\frac{{{T}_{c}}R}{8{{p}_{c}}}"We have for helium "{{T}_{c}}=5.3\\,K" and "{{p}_{c}}\\text{ }=\\text{ }2.25\\text{ }atm." Convert pressure in atmospheres to pressure in pascals:
"{{p}_{c}}=\\text{1}\\text{.01325}\\cdot \\text{1}{{\\text{0}}^{5}}\\,\\left( Pa\/1\\,atm \\right)\\cdot 2.25\\text{ }atm\\approx \\text{2}\\text{.28}\\cdot \\text{1}{{\\text{0}}^{5}}\\text{ }Pa"Substituting the known values into these relations, we get
"\\approx 0.0036\\,\\frac{{{J}^{2}}}{Pa\\cdot mo{{l}^{2}}}=0.0036\\,\\frac{Pa\\cdot {{m}^{6}}}{mo{{l}^{2}}}"
"b=\\frac{5.3\\,K\\cdot 8.31\\text{ }J\\cdot mo{{l}^{-1}}\\,\\cdot {{K}^{-1}}}{8\\cdot \\text{2}\\text{.28}\\cdot \\text{1}{{\\text{0}}^{5}}\\text{ }Pa}\\approx \\text{2}\\text{.4}\\cdot \\text{1}{{\\text{0}}^{-5}}\\frac{J}{Pa\\cdot mol}=\\text{2}\\text{.4}\\cdot \\text{1}{{\\text{0}}^{-5}}\\frac{{{m}^{3}}}{mol}"
To convert a from "Pa\\text{ }\\cdot {{m}^{6}}\/mo{{l}^{2}}" to "Pa\\cdot {{L}^{2}}\/mo{{l}^{2}}" multiply by 106
"a=3.6\\,\\cdot {{10}^{3}}\\frac{Pa\\cdot {{L}^{2}}}{mo{{l}^{2}}}"To convert b from "{{m}^{3}}\/mo{{l}}" to "L\/mo{{l}}" multiply by 103
"b=\\text{2}\\text{.4}\\cdot \\text{1}{{\\text{0}}^{-2}}\\frac{L}{mol}"To convert a from "Pa\\cdot \\text{ }{{L}^{2}}\/mo{{l}^{2}}" , to "bar\\cdot \\text{ }{{L}^{2}}\/mo{{l}^{2}}" multiply by 10-5
"a=3.6\\,\\cdot {{10}^{-2}}\\frac{bar\\cdot {{L}^{2}}}{mo{{l}^{2}}}"Thus
"a=0.0036\\,\\frac{Pa\\cdot {{m}^{6}}}{mo{{l}^{2}}}=3.6\\,\\cdot {{10}^{3}}\\frac{Pa\\cdot {{L}^{2}}}{mo{{l}^{2}}}=3.6\\,\\cdot {{10}^{-2}}\\frac{bar\\cdot {{L}^{2}}}{mo{{l}^{2}}}""b=\\text{2}\\text{.4}\\cdot \\text{1}{{\\text{0}}^{-5}}\\frac{{{m}^{3}}}{mol}=\\text{2}\\text{.4}\\cdot \\text{1}{{\\text{0}}^{-2}}\\frac{L}{mol}"
Comments
Leave a comment