Question #88750
Calculate van der Waals' constants for
helium using the data Tc = 5.3 K,
pc = 2.25 atm and R = 8.31 J morl K-1.
1
Expert's answer
2019-05-06T10:36:45-0400

The van der Waals' constants a and b are related to the critical temperature Tc{{T}_{c}} and pressure pc{{p}_{c}} by

a=27Tc2R264pc,b=TcR8pca=\frac{27T_{c}^{2}{{R}^{2}}}{64{{p}_{c}}},\,\,\,\,b=\frac{{{T}_{c}}R}{8{{p}_{c}}}

We have for helium Tc=5.3K{{T}_{c}}=5.3\,K and pc = 2.25 atm.{{p}_{c}}\text{ }=\text{ }2.25\text{ }atm. Convert pressure in atmospheres to pressure in pascals:

pc=1.01325105(Pa/1atm)2.25 atm2.28105 Pa{{p}_{c}}=\text{1}\text{.01325}\cdot \text{1}{{\text{0}}^{5}}\,\left( Pa/1\,atm \right)\cdot 2.25\text{ }atm\approx \text{2}\text{.28}\cdot \text{1}{{\text{0}}^{5}}\text{ }Pa

Substituting the known values into these relations, we get


a=27(5.3K)2(8.31 Jmol1K1)2642.28105 Paa=\frac{27\cdot {{\left( 5.3\,K \right)}^{2}}{{\left( 8.31\text{ }J\cdot mo{{l}^{-1}}\,\cdot {{K}^{-1}} \right)}^{2}}}{64\cdot \text{2}\text{.28}\cdot \text{1}{{\text{0}}^{5}}\text{ }Pa}

0.0036J2Pamol2=0.0036Pam6mol2\approx 0.0036\,\frac{{{J}^{2}}}{Pa\cdot mo{{l}^{2}}}=0.0036\,\frac{Pa\cdot {{m}^{6}}}{mo{{l}^{2}}}

b=5.3K8.31 Jmol1K182.28105 Pa2.4105JPamol=2.4105m3molb=\frac{5.3\,K\cdot 8.31\text{ }J\cdot mo{{l}^{-1}}\,\cdot {{K}^{-1}}}{8\cdot \text{2}\text{.28}\cdot \text{1}{{\text{0}}^{5}}\text{ }Pa}\approx \text{2}\text{.4}\cdot \text{1}{{\text{0}}^{-5}}\frac{J}{Pa\cdot mol}=\text{2}\text{.4}\cdot \text{1}{{\text{0}}^{-5}}\frac{{{m}^{3}}}{mol}

To convert a from Pa m6/mol2Pa\text{ }\cdot {{m}^{6}}/mo{{l}^{2}} to PaL2/mol2Pa\cdot {{L}^{2}}/mo{{l}^{2}} multiply by 106

a=3.6103PaL2mol2a=3.6\,\cdot {{10}^{3}}\frac{Pa\cdot {{L}^{2}}}{mo{{l}^{2}}}

To convert b from m3/mol{{m}^{3}}/mo{{l}} to L/molL/mo{{l}} multiply by 103

b=2.4102Lmolb=\text{2}\text{.4}\cdot \text{1}{{\text{0}}^{-2}}\frac{L}{mol}

To convert a from Pa L2/mol2Pa\cdot \text{ }{{L}^{2}}/mo{{l}^{2}} , to bar L2/mol2bar\cdot \text{ }{{L}^{2}}/mo{{l}^{2}} multiply by 10-5

a=3.6102barL2mol2a=3.6\,\cdot {{10}^{-2}}\frac{bar\cdot {{L}^{2}}}{mo{{l}^{2}}}

Thus

a=0.0036Pam6mol2=3.6103PaL2mol2=3.6102barL2mol2a=0.0036\,\frac{Pa\cdot {{m}^{6}}}{mo{{l}^{2}}}=3.6\,\cdot {{10}^{3}}\frac{Pa\cdot {{L}^{2}}}{mo{{l}^{2}}}=3.6\,\cdot {{10}^{-2}}\frac{bar\cdot {{L}^{2}}}{mo{{l}^{2}}}

b=2.4105m3mol=2.4102Lmolb=\text{2}\text{.4}\cdot \text{1}{{\text{0}}^{-5}}\frac{{{m}^{3}}}{mol}=\text{2}\text{.4}\cdot \text{1}{{\text{0}}^{-2}}\frac{L}{mol}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS