The initial volume we can get from equation of state
"P_iV_i=\\nu RT""V_i=\\frac{\\nu RT}{P_i}"
For isothermal process
So
"V_f=\\frac{P_iV_i}{P_f}=\\frac{P_i}{P_f}\\frac{\\nu RT}{P_i}""=\\frac{2\\:\\rm{atm}}{1\\:\\rm{atm}}\\frac{0.06\\:\\rm{mol}\\times 8.31\\:\\rm{J\/(K\\: mol)}\\times 300\\:\\rm{K}}{2\\:\\rm{atm}\\times 101325\\:\\rm{Pa\/atm}}""=0.0015\\:\\rm{m^3}=1.5\\:\\rm{L}"
For adiabatic process
"P_fV_f^{\\gamma}=P_iV_i^{\\gamma}"So
"V_f=\\left(\\frac{P_i}{P_f}\\right)^{1\/\\gamma}\\frac{\\nu RT}{P_i}""=\\left(\\frac{2\\:\\rm{atm}}{1\\:\\rm{atm}}\\right)^{1\/1.4}\\frac{0.06\\:\\rm{mol}\\times 8.31\\:\\rm{J\/(K\\: mol)}\\times 300\\:\\rm{K}}{2\\:\\rm{atm}\\times 101325\\:\\rm{Pa\/atm}}"
"=0.0012\\:\\rm{m^3}=1.2\\:\\rm{L}"
Comments
Leave a comment