Question #85760
An iron rod is 2.58m long at 0°C. Calculate the length of a brass rod at 0°C, if the difference between the lengths of the two rods must remain the same at all temperature. Linear expansivity of iron = 1.2 × 10^-5k^-1. Linear expansivity of brass = 1.9 × 10^-5k^-1
1
Expert's answer
2019-03-05T09:43:08-0500

By the definition of the linear thermal expansion we have:


ΔLiron=αironL0,ironΔTiron,\Delta L_{iron} = \alpha_{iron} L_{0, iron} \Delta T_{iron},ΔLbrass=αbrassL0,brassΔTbrass,\Delta L_{brass} = \alpha_{brass} L_{0, brass} \Delta T_{brass},

here, ΔLiron\Delta L_{iron}, ΔLbrass\Delta L_{brass} are the difference in the lengths of the copper and aluminum rods after the change in the temperature, respectively; L0,ironL_{0, iron}, L0,brassL_{0, brass} are the length of the copper and aluminum rods before the change in the temperature (at 0°C), respectively; αiron\alpha_{iron}, αbrass\alpha_{brass} are the coefficients of linear expansion for the copper and aluminum rods, respectively; ΔTiron\Delta T_{iron}, ΔTbrass\Delta T_{brass} are the change in temperature, respectively.

Since the difference between the lengths of the two rods must remain the same at all temperature, we can write:


ΔTiron=ΔTbrass=ΔT,\Delta T_{iron} = \Delta T_{brass} = \Delta T,ΔLiron=ΔLbrass.\Delta L_{iron} = \Delta L_{brass}.

Then, we get:


αironL0,ironΔT=αbrassL0,brassΔT,\alpha_{iron} L_{0, iron} \Delta T = \alpha_{brass} L_{0, brass} \Delta T,L0,brass=αironL0,ironαbrass=1.2105K12.58m1.9105K1=1.63m.L_{0, brass} = \dfrac{\alpha_{iron} L_{0, iron}}{\alpha_{brass}} = \dfrac{1.2 \cdot 10^{-5} K^{-1} \cdot 2.58 m}{1.9 \cdot 10^{-5} K^{-1}} = 1.63 m.

Answer:

L0,brass=1.63m.L_{0, brass} = 1.63 m.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Abdul Wahid
10.04.22, 10:48

Thank you

LATEST TUTORIALS
APPROVED BY CLIENTS