Question #84470
For an intrinsic semiconductor with a band gap of 0.75eV, calculate the effective density of states for the electrons and the concentration of electrons in the conduction band at T=300K, given that the effective masses of the electron and hole are equal to the free mass of the electron.
1
Expert's answer
2019-02-04T10:09:26-0500

The effective density of states for the electron in the conduction band (take

me=m0m_e^*=m_0

):

NC=2[2πmekTh2]3/2=N_C=2[\frac{2\pi m_e^*kT}{h^2}]^{3/2}==2[2π9.1110311.381023300(6.631034)2]3/2=2.51025 m3.=2[\frac{2\pi\cdot 9.11\cdot 10^{-31}\cdot 1.38\cdot 10^{-23}\cdot 300}{(6.63\cdot 10^{-34})^2}]^{3/2}=2.5\cdot 10^{25} \text{ m}^{-3}.

The same will be for the valence band according to the condition:

NV=2[2πmhkTh2]3/2=NC=2.51025 m3.N_V=2[\frac{2\pi m_h^*kT}{h^2}]^{3/2}=N_C=2.5\cdot 10^{25} \text{ m}^{-3}.

The concentration of electrons in the conduction band:

ni=NCNVeEg/2kT=n_i=\sqrt{N_C N_V}\cdot e^{-E_g/2kT}==2.51025exp(0.751.61019/(21.381023300))==2.5\cdot 10^{25}\cdot \text{exp}(-0.75\cdot 1.6\cdot 10^{-19}/(2\cdot 1.38\cdot 10^{-23}\cdot 300))==1.251019 m3.=1.25\cdot 10^{19}\text{ m}^{-3}.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS