Answer to Question #301806 in Molecular Physics | Thermodynamics for Dhanush

Question #301806

The expression for the number of molecules in a Maxwellian gas having speeds in the range vto v+ dv is


dNv= 4πN(m÷2πkbT)^3/2 v^2exp[-(mv^2÷2kbT)]dv using this relation, obtain an expression for most probable speed

1
Expert's answer
2022-02-24T09:05:13-0500
dN=4πN(m2πkT)3/2v2exp[(mv2/2kT)]dvdN=4πN\left(\frac{m}{2πkT}\right)^{3/2} v^2\exp[-(mv^2/2kT)]dv

(v2exp[(mv2/2kT)])=2vexp[(mv2/2kT)]mv3/kTexp[(mv2/2kT)]=0( v^2\exp[-(mv^2/2kT)])'=2v\exp[-(mv^2/2kT)]\\ -mv^3/kT\exp[-(mv^2/2kT)]=0

2=mv2/kT2=mv^2/kT

vmp=2kT/mv_{mp}=\sqrt{2kT/m}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment