While the pressure remains constant at 689.5 kPa the volume of a system of air changes from 0.567 m3 to 0.283 m3. Determine the heat added/rejected
P=689.5 kPaV1=0.567 m3V2=0.283 m3P=689.5 \; kPa \\ V_1= 0.567 \;m^3 \\ V_2 = 0.283 \;m^3P=689.5kPaV1=0.567m3V2=0.283m3
Assume m=1
Qsup=ΔH=mcpΔT=1.005 kJ/kgK(T2−T1)Q_{sup} = ΔH = mc_pΔT \\ = 1.005 \;kJ/kgK(T_2-T_1)Qsup=ΔH=mcpΔT=1.005kJ/kgK(T2−T1)
From ideal gas equation
PV1=mRT1T1=689.5×0.5670.287×1=1362.18 KPV2=mRT2T2=689.5×0.2830.287×1T2=679.89 KQsup=ΔH=1.005×(679.89−1362.18)=−685.70 kJPV_1 =mRT_1 \\ T_1 = \frac{689.5 \times 0.567}{0.287 \times 1} = 1362.18 \;K \\ PV_2=mRT_2 \\ T_2 = \frac{689.5 \times 0.283}{0.287 \times 1} \\ T_2 = 679.89 \;K \\ Q_{sup} = ΔH = 1.005 \times (679.89-1362.18) = -685.70 \;kJPV1=mRT1T1=0.287×1689.5×0.567=1362.18KPV2=mRT2T2=0.287×1689.5×0.283T2=679.89KQsup=ΔH=1.005×(679.89−1362.18)=−685.70kJ
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment