Question #238188

A horse is harnessed to a sled having a mass of 241 kg, including supplies. The horse must exert a force exceeding 1260 N at an angle of 30.3° (above the horizontal) in order to get the sled moving. Treat the sled as a point particle.




(a) Calculate the normal force (in N) on the sled when the magnitude of the applied force is 1260 N. (Enter the magnitude.) __N


(b) Find the coefficient of static friction between the sled and the ground beneath it.


(c) Find the static friction force (in N) when the horse is exerting a force of 6.30  102 N on the sled at the same angle. (Enter the magnitude.) __N



1
Expert's answer
2021-09-18T15:00:16-0400


(a)

N+Fsinθ=mgN=mgFsinθN=241×9.811260×sin(30.3°)N=2364.21635.69N=1728.52  NN +Fsinθ =mg \\ N= mg -Fsinθ \\ N = 241 \times 9.81 -1260 \times sin(30.3°) \\ N= 2364.21 -635.69 \\ N= 1728.52\;N

(b) For static

fx=0Fcosθf=0Fcosθ=μNμ=FcosθNμ=1260×cos(30.3°)Nμ=1260×0.863391728.52μ=0.629\sum fx = 0 \\ Fcosθ -f =0 \\ Fcosθ = \mu N \\ \mu = \frac{Fcosθ}{N} \\ \mu = \frac{1260 \times cos(30.3°)}{N} \\ \mu = \frac{1260 \times 0.86339 }{1728.52} \\ \mu = 0.629

(c) If F = 630 N

N=mgFsinθN=241×9.81630×sinθN=2364.21317.84N=2046.37  NfR=μNfR=0.629×2046.37fR=1287.16  NN = mg -Fsinθ \\ N = 241 \times 9.81 -630 \times sinθ \\ N = 2364.21 -317.84 \\ N = 2046.37 \;N \\ f_R = \mu N \\ f_R= 0.629 \times 2046.37 \\ f_R = 1287.16 \;N


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS