Question #238130

Air has a velocity of 1000 km/h at a pressure of 9.81 kN/m2 in vacuum

and a temperature of 47°C. Compute its stagnation properties and the local Mach number. Take

atmospheric pressure = 98.1 kN/m2, R = 287 J/kg K and γ = 1.4.

What would be the compressibility correction factor for a pitot-static tube to measure the

velocity at a Mach number of 0.8


1
Expert's answer
2021-09-16T14:19:04-0400

Velocity of air,

V0=1000  km/h=1000×100060×60=277.78  m/sV_0 = 1000 \;km/h = \frac{1000 \times 1000}{60 \times 60} = 277.78 \;m/s

Temperature of air,

T0=47+273=320  KT_0 = 47+273 = 320 \;K

Atmospheric pressure,

patm=98.1  kN/m2p_{atm} = 98.1 \;kN/m^2

Pressure of air (static),

p0=98.19.81=88.29  kN/m2R=287  J/kg  Kγ=1.4p_0 = 98.1 -9.81=88.29 \;kN/m^2 \\ R=287 \;J/kg \;K \\ γ = 1.4

Sonic velocity,

C0=γRT0=1.4×287×320=358.6  m/sC_0 = \sqrt{γ RT_0} = \sqrt{1.4 \times 287 \times 320} = 358.6 \;m/s

Mach number,

M0=V0C0=277.78358.6=0.7746M_0 = \frac{V_0}{C_0} = \frac{277.78}{358.6} = 0.7746

Stagnation pressure, ps :

The stagnation pressure is given by,

ps=p0[1+(γ12M02)]γ/(γ1)ps=88.29[1+(1.412×0.77462)]1.4/(1.41)=88.29(1.12)3.5=131.27  kN/m2p_s=p_0[1 +(\frac{γ-1}{2}M_0^2)]^{γ/(γ-1)} \\ p_s = 88.29[1 +(\frac{1.4-1}{2} \times 0.7746^2)]^{1.4/(1.4-1)} \\ = 88.29(1.12)^{3.5} = 131.27 \;kN/m^2

Stagnation temperature, Ts :

Ts=T0[1+(γ12)M02]Ts=320[1+(1.412)×0.77462]=358.4  K  or  85.4  °CT_s =T_0[1 +(\frac{γ-1}{2})M_0^2] \\ T_s = 320[1 +(\frac{1.4-1}{2}) \times 0.7746^2] = 358.4 \;K \;or \;85.4 \;°C

Stagnation density, ρs :

ρs=psRTs=131.27×103287×358.4=1.276  kg/m3ρ_s = \frac{p_s}{RT_s} = \frac{131.27 \times 10^3}{287 \times 358.4} = 1.276 \;kg/m^3

Compressibility factor at M = 0.8 :

Compressibility factor =1+M024+2γ24M04= 1 + \frac{M_0^2}{4} + \frac{2-γ}{24}M_0^4…

=1+0.824+21.424×0.84=1.1702= 1 + \frac{0.8^2}{4} + \frac{2-1.4}{24} \times 0.8^4 = 1.1702


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS