Answer to Question #237768 in Molecular Physics | Thermodynamics for NANA

Question #237768

Below is a 𝑇𝑉 diagram of a reversible process of a monatomic ideal gas with 𝑛 moles such that 𝑛𝑅 = 2.00 J K −1 . The process traces the curve 𝑇 = (400 K m−3 ) 𝑉 − (100 K m−6 ) 𝑉 2 starting at state 𝑎 with 𝑉𝑎 = 3.00 m3 and ending at state 𝑏 with with 𝑉𝑏 = 1.00 m3.Calculate, for this process (ensure that signed values have the correct sign): (a) Pressures 𝑃𝑎 and 𝑃𝑏 at the endpoints, in Pa (b) Change in internal energy, ∆𝑈, in J (c) Work 𝑊 done by the gas, in J (d) Heat 𝑄 added to the gas, in J (e) Entropy change Δ𝑆 of the gas, in J K.


1
Expert's answer
2021-09-16T10:25:57-0400

(a) First, we use the ideal gas law and the equation that relates temperature and volume to find the pressure of the system:


PV=nRT    P=nRTVP=(nR)TV=(nR)(AV+BV2)VP=(2JK)(400Km3100Km6V)PV=nRT \implies P=\cfrac{nRT}{V} \\P=(nR)\cfrac{T}{V}=(nR)\cfrac{(AV+BV^2)}{V} \\P=(2 \frac{J}{K})(400 \frac{K}{m^3}-100\frac{K}{m^6}V)


Then we substitute to find Pa and Pb:


Pa=(2JK)(400Km3100Km6(3m3))Pa=(2)(400300)Pa=200PaPb=(2JK)(400Km3100Km6(1m3))Pb=(2)(400100)Pa=600Pa\\P_a=(2 \frac{J}{K})(400 \frac{K}{m^3}-100\frac{K}{m^6} (3\,m^3) ) \\ P_a=(2)(400-300)\,Pa=200\,Pa \\P_b=(2 \frac{J}{K})(400 \frac{K}{m^3}-100\frac{K}{m^6}(1\,m^3)) \\ P_b=(2)(400-100)\,Pa=600\,Pa


We also know from the equation that relates volume and temperature that:


T=f(V)=(400Km3)V(100Km6)V2    dT=[(400Km3)(100Km6)V]dVT=f(V)=(400 \frac{K}{m^3})V-(100\frac{K}{m^6})V^2 \\ \implies dT= \Big[ (400 \frac{K}{m^3})-(100\frac{K}{m^6})V \Big]dV


With that information we proceed to calculate the work done on this process and the change on the internal energy:


W=pdV=nRdTW=nRVaVb[(400Km3)(100Km6)V]dVW=(2JK)[(400Km3)(VbVa)(50Km6)(Vb2Va2)]W=[(800Jm3)(13)m3(100Jm6)((1)2(3)2)m6]    W=[(800)(2)(100)(8)]J=[1600+800]J=800JW=\int pdV= \int nRdT \\ W=nR \int_{V_a}^{V_b} \Big[ (400 \frac{K}{m^3})- (100\frac{K}{m^6}) V \Big]dV \\ W=(2 \frac{J}{K}) \Big[ (400 \frac{K}{m^3}) (V_b-V_a) - (50\frac{K}{m^6}) (V^2_b-V^2_a) \Big] \\ W=\Big[ (800 \frac{J}{m^3}) (1-3)m^3 - (100\frac{J}{m^6}) ((1)^2-(3)^2)m^6\Big] \\ \implies W= [(800)(-2)-(100)(-8)]\,J=[-1600+800] \,J=-800\,J


Now, to determine the change in internal energy we use ΔU=nCvdT\Delta U=nC_vdT, knowing that for a monoatomic gas Cv=3/2R:


ΔU=nCvdT=32nRdTΔU=32nRVaVb[(400Km3)(100Km6)V]dVΔU=32(2JK)[(400Km3)(VbVa)(50Km6)(Vb2Va2)]ΔU=(1200Jm3)(13)m3(75Jm6)((1)2(3)2)m6    ΔU=[(1200)(2)(75)(8)]J=[2400+600]J=1800J\Delta U=\int nC_vdT=\int \frac{3}{2}nRdT \\ \Delta U= \frac{3}{2}nR \int_{V_a}^{V_b} \Big[ (400 \frac{K}{m^3})-(100\frac{K}{m^6})V \Big]dV \\ \Delta U= \frac{3}{2}(2 \frac{J}{K}) \Big[ (400 \frac{K}{m^3}) (V_b-V_a) - (50\frac{K}{m^6}) (V^2_b-V^2_a) \Big] \\ \Delta U= (1200 \frac{J}{m^3}) (1-3)m^3 - (75\frac{J}{m^6}) ((1)^2-(3)^2)m^6 \\ \implies \Delta U=[(1200)(-2)-(75)(-8)]\,J=[-2400+600]\,J=-1800\,J


With that information we use the definition for the internal energy change to find the heat change:


 ΔU=QW    Q=ΔU+WQ=(1800800)J=2600J\text{ } \Delta U=Q-W \implies Q=\Delta U + W \\Q= (-1800-800)\,J=-2600\,J


Then, since the temperature for the initial and final states is the same (because Ta = Tb = 300 K) we proceed to calculate ΔS\Delta S :

ΔS=QT=2600J300K=8.67JK\Delta S=\cfrac{Q}{T} =\cfrac{-2600\,J}{300\,K}=-8.67\cfrac{J}{K}


In conclusion:


(a) Pressures 𝑃𝑎 and 𝑃𝑏 at the endpoints, in Pa: Pa = 200 Pa and Pb = 600 Pa.(b) Change in internal energy, ∆𝑈, in J: ∆𝑈= - 1800 J(c) Work 𝑊 done by the gas, in J: 𝑊 = - 800 J(d) Heat 𝑄 added to the gas, in J: 𝑄 = - 2600 J(e) Entropy change Δ𝑆 of the gas, in J/K: Δ𝑆 = -8.67 J/K

Reference:

  • Sears, F. W., & Zemansky, M. W. (1973). University physics.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment