Answer to Question #237768 in Molecular Physics | Thermodynamics for NANA

Question #237768

Below is a 𝑇𝑉 diagram of a reversible process of a monatomic ideal gas with 𝑛 moles such that 𝑛𝑅 = 2.00 J K βˆ’1 . The process traces the curve 𝑇 = (400 K mβˆ’3 ) 𝑉 βˆ’ (100 K mβˆ’6 ) 𝑉 2 starting at state π‘Ž with π‘‰π‘Ž = 3.00 m3 and ending at state 𝑏 with with 𝑉𝑏 = 1.00 m3.Calculate, for this process (ensure that signed values have the correct sign): (a) Pressures π‘ƒπ‘Ž and 𝑃𝑏 at the endpoints, in Pa (b) Change in internal energy, βˆ†π‘ˆ, in J (c) Work π‘Š done by the gas, in J (d) Heat 𝑄 added to the gas, in J (e) Entropy change Δ𝑆 of the gas, in J K.


1
Expert's answer
2021-09-16T10:25:57-0400

(a) First, we use the ideal gas law and the equation that relates temperature and volume to find the pressure of the system:


"PV=nRT \\implies P=\\cfrac{nRT}{V}\n\\\\P=(nR)\\cfrac{T}{V}=(nR)\\cfrac{(AV+BV^2)}{V}\n\\\\P=(2 \\frac{J}{K})(400 \\frac{K}{m^3}-100\\frac{K}{m^6}V)"


Then we substitute to find Pa and Pb:


"\\\\P_a=(2 \\frac{J}{K})(400 \\frac{K}{m^3}-100\\frac{K}{m^6} (3\\,m^3) )\n\\\\ P_a=(2)(400-300)\\,Pa=200\\,Pa\n\\\\P_b=(2 \\frac{J}{K})(400 \\frac{K}{m^3}-100\\frac{K}{m^6}(1\\,m^3))\n\\\\ P_b=(2)(400-100)\\,Pa=600\\,Pa"


We also know from the equation that relates volume and temperature that:


"T=f(V)=(400 \\frac{K}{m^3})V-(100\\frac{K}{m^6})V^2\n\\\\ \\implies dT= \\Big[ (400 \\frac{K}{m^3})-(100\\frac{K}{m^6})V \\Big]dV"


With that information we proceed to calculate the work done on this process and the change on the internal energy:


"W=\\int pdV= \\int nRdT\n\\\\ W=nR \\int_{V_a}^{V_b} \\Big[ (400 \\frac{K}{m^3})- (100\\frac{K}{m^6}) V \\Big]dV\n\\\\ W=(2 \\frac{J}{K}) \\Big[ (400 \\frac{K}{m^3}) (V_b-V_a) - (50\\frac{K}{m^6}) (V^2_b-V^2_a) \\Big]\n\\\\ W=\\Big[ (800 \\frac{J}{m^3}) (1-3)m^3 - (100\\frac{J}{m^6}) ((1)^2-(3)^2)m^6\\Big]\n\\\\ \\implies W= [(800)(-2)-(100)(-8)]\\,J=[-1600+800] \\,J=-800\\,J"


Now, to determine the change in internal energy we use "\\Delta U=nC_vdT", knowing that for a monoatomic gas Cv=3/2R:


"\\Delta U=\\int nC_vdT=\\int \\frac{3}{2}nRdT\n\\\\ \\Delta U= \\frac{3}{2}nR \\int_{V_a}^{V_b} \\Big[ (400 \\frac{K}{m^3})-(100\\frac{K}{m^6})V \\Big]dV\n\\\\ \\Delta U= \\frac{3}{2}(2 \\frac{J}{K}) \\Big[ (400 \\frac{K}{m^3}) (V_b-V_a) - (50\\frac{K}{m^6}) (V^2_b-V^2_a) \\Big]\n\\\\ \\Delta U= (1200 \\frac{J}{m^3}) (1-3)m^3 - (75\\frac{J}{m^6}) ((1)^2-(3)^2)m^6 \n\\\\ \\implies \\Delta U=[(1200)(-2)-(75)(-8)]\\,J=[-2400+600]\\,J=-1800\\,J"


With that information we use the definition for the internal energy change to find the heat change:


"\\text{ } \\Delta U=Q-W \\implies Q=\\Delta U + W \n\\\\Q= (-1800-800)\\,J=-2600\\,J"


Then, since the temperature for the initial and final states is the same (because Ta = Tb = 300 K) we proceed to calculate "\\Delta S" :

"\\Delta S=\\cfrac{Q}{T} =\\cfrac{-2600\\,J}{300\\,K}=-8.67\\cfrac{J}{K}"


In conclusion:


(a) Pressures π‘ƒπ‘Ž and 𝑃𝑏 at the endpoints, in Pa: Pa = 200 Pa and Pb = 600 Pa.(b) Change in internal energy, βˆ†π‘ˆ, in J: βˆ†π‘ˆ= - 1800 J(c) Work π‘Š done by the gas, in J: π‘Š = - 800 J(d) Heat 𝑄 added to the gas, in J: 𝑄 = - 2600 J(e) Entropy change Δ𝑆 of the gas, in J/K: Δ𝑆 = -8.67 J/K

Reference:

  • Sears, F. W., & Zemansky, M. W. (1973). University physics.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS