(a) First, we use the ideal gas law and the equation that relates temperature and volume to find the pressure of the system:
PV=nRT⟹P=VnRTP=(nR)VT=(nR)V(AV+BV2)P=(2KJ)(400m3K−100m6KV)
Then we substitute to find Pa and Pb:
Pa=(2KJ)(400m3K−100m6K(3m3))Pa=(2)(400−300)Pa=200PaPb=(2KJ)(400m3K−100m6K(1m3))Pb=(2)(400−100)Pa=600Pa
We also know from the equation that relates volume and temperature that:
T=f(V)=(400m3K)V−(100m6K)V2⟹dT=[(400m3K)−(100m6K)V]dV
With that information we proceed to calculate the work done on this process and the change on the internal energy:
W=∫pdV=∫nRdTW=nR∫VaVb[(400m3K)−(100m6K)V]dVW=(2KJ)[(400m3K)(Vb−Va)−(50m6K)(Vb2−Va2)]W=[(800m3J)(1−3)m3−(100m6J)((1)2−(3)2)m6]⟹W=[(800)(−2)−(100)(−8)]J=[−1600+800]J=−800J
Now, to determine the change in internal energy we use ΔU=nCvdT, knowing that for a monoatomic gas Cv=3/2R:
ΔU=∫nCvdT=∫23nRdTΔU=23nR∫VaVb[(400m3K)−(100m6K)V]dVΔU=23(2KJ)[(400m3K)(Vb−Va)−(50m6K)(Vb2−Va2)]ΔU=(1200m3J)(1−3)m3−(75m6J)((1)2−(3)2)m6⟹ΔU=[(1200)(−2)−(75)(−8)]J=[−2400+600]J=−1800J
With that information we use the definition for the internal energy change to find the heat change:
ΔU=Q−W⟹Q=ΔU+WQ=(−1800−800)J=−2600J
Then, since the temperature for the initial and final states is the same (because Ta = Tb = 300 K) we proceed to calculate ΔS :
ΔS=TQ=300K−2600J=−8.67KJ
Reference:
- Sears, F. W., & Zemansky, M. W. (1973). University physics.
Comments
Leave a comment