Below is a ππ diagram of a reversible process of a monatomic ideal gas with π moles such that ππ = 2.00 J K β1 . The process traces the curve π = (400 K mβ3 ) π β (100 K mβ6 ) π 2 starting at state π with ππ = 3.00 m3 and ending at state π with with ππ = 1.00 m3.Calculate, for this process (ensure that signed values have the correct sign): (a) Pressures ππ and ππ at the endpoints, in Pa (b) Change in internal energy, βπ, in J (c) Work π done by the gas, in J (d) Heat π added to the gas, in J (e) Entropy change Ξπ of the gas, in J K.
(a) First, we use the ideal gas law and the equation that relates temperature and volume to find the pressure of the system:
"PV=nRT \\implies P=\\cfrac{nRT}{V}\n\\\\P=(nR)\\cfrac{T}{V}=(nR)\\cfrac{(AV+BV^2)}{V}\n\\\\P=(2 \\frac{J}{K})(400 \\frac{K}{m^3}-100\\frac{K}{m^6}V)"
Then we substitute to find Pa and Pb:
"\\\\P_a=(2 \\frac{J}{K})(400 \\frac{K}{m^3}-100\\frac{K}{m^6} (3\\,m^3) )\n\\\\ P_a=(2)(400-300)\\,Pa=200\\,Pa\n\\\\P_b=(2 \\frac{J}{K})(400 \\frac{K}{m^3}-100\\frac{K}{m^6}(1\\,m^3))\n\\\\ P_b=(2)(400-100)\\,Pa=600\\,Pa"
We also know from the equation that relates volume and temperature that:
"T=f(V)=(400 \\frac{K}{m^3})V-(100\\frac{K}{m^6})V^2\n\\\\ \\implies dT= \\Big[ (400 \\frac{K}{m^3})-(100\\frac{K}{m^6})V \\Big]dV"
With that information we proceed to calculate the work done on this process and the change on the internal energy:
"W=\\int pdV= \\int nRdT\n\\\\ W=nR \\int_{V_a}^{V_b} \\Big[ (400 \\frac{K}{m^3})- (100\\frac{K}{m^6}) V \\Big]dV\n\\\\ W=(2 \\frac{J}{K}) \\Big[ (400 \\frac{K}{m^3}) (V_b-V_a) - (50\\frac{K}{m^6}) (V^2_b-V^2_a) \\Big]\n\\\\ W=\\Big[ (800 \\frac{J}{m^3}) (1-3)m^3 - (100\\frac{J}{m^6}) ((1)^2-(3)^2)m^6\\Big]\n\\\\ \\implies W= [(800)(-2)-(100)(-8)]\\,J=[-1600+800] \\,J=-800\\,J"
Now, to determine the change in internal energy we use "\\Delta U=nC_vdT", knowing that for a monoatomic gas Cv=3/2R:
"\\Delta U=\\int nC_vdT=\\int \\frac{3}{2}nRdT\n\\\\ \\Delta U= \\frac{3}{2}nR \\int_{V_a}^{V_b} \\Big[ (400 \\frac{K}{m^3})-(100\\frac{K}{m^6})V \\Big]dV\n\\\\ \\Delta U= \\frac{3}{2}(2 \\frac{J}{K}) \\Big[ (400 \\frac{K}{m^3}) (V_b-V_a) - (50\\frac{K}{m^6}) (V^2_b-V^2_a) \\Big]\n\\\\ \\Delta U= (1200 \\frac{J}{m^3}) (1-3)m^3 - (75\\frac{J}{m^6}) ((1)^2-(3)^2)m^6 \n\\\\ \\implies \\Delta U=[(1200)(-2)-(75)(-8)]\\,J=[-2400+600]\\,J=-1800\\,J"
With that information we use the definition for the internal energy change to find the heat change:
"\\text{ } \\Delta U=Q-W \\implies Q=\\Delta U + W \n\\\\Q= (-1800-800)\\,J=-2600\\,J"
Then, since the temperature for the initial and final states is the same (because Ta = Tb = 300 K) we proceed to calculate "\\Delta S" :
"\\Delta S=\\cfrac{Q}{T} =\\cfrac{-2600\\,J}{300\\,K}=-8.67\\cfrac{J}{K}"
Reference:
Comments
Leave a comment