4. A fluid system undergoes a non-flow frictionless process from 4.5 ft 3 to a final volume 1.5 ft 3 in
accordance with the defining relation P= 60/V + 30 psi, where volume in ft 3 . During the process the
system reject 30 BTU of heat. Determine the change in enthalpy and internal energy.
Given:
"V_1 = 4.5\\; ft^3 \\\\\n\nV_2 = 1.5 \\; ft^3 \\\\\n\nQ_{1-2} = - 30 \\; BTU \\\\\n\nP = \\frac{60}{V} + 30 \\; psi"
we know that work done
"W_{1-2} = \\int^{V_2}_{V_1} PdV = \\int^{V_2}_{V_1} [\\frac{60}{V} +30]dV \\\\\n\nW_{1-2} = \\int^{V_2}_{V_1} \\frac{60}{V} dV + \\int^{V_2}_{V_1} 30dV \\\\\n\nW_{1-2} = 60[ln(V)]^{V_2}_{V_1} + 30[V]^{V_2}_{ V_1} \\\\\n\nW_{1-2} = 60 ln(\\frac{V_2}{V_1}) + 30(V_2-V_1) \\\\\n\nW_{1-2} = 60ln(\\frac{1.5}{4.5}) + 30(1.5 - 4.5) \\\\\n\nW_{1-2} = -155.9167 \\; psi \\cdot ft^3"
we know that
"1 \\; psi = 144 \\; lbf\/ft^2 \\\\\n\n1 \\; BTU = 778 \\; ft \\cdot lbf \\\\\n\nW_{1-2} = \\frac{-155.9167 \\times 144}{ 778} \\; BTU \\\\\n\nW_{1-2} = -28.86 \\; BTU"
From first law of thermodynamics
"Q = \u0394U + W \\\\\n\n\u0394U = Q - W \\\\\n\n\u0394U = -30 - (-28.86)"
ΔU = -1.14 BTU Change in inlernal energy
Now change in enthalpy is given as
"\u0394H = \u0394U + (P_2V_2 -P_1V_2) \\\\\n\nP_1=\\frac{60}{V_1} + 30 = \\frac{60}{4.5} + 30 + 43.33 \\; psi \\\\\n\nP_1V_1=43.33 \\times 4.5=195\\; psi \\cdot ft^3= \\frac{195 \\times 144}{778} = 36.09 \\; BTU \\\\\n\nP_2 = \\frac{60}{V_2} + 30 = \\frac{60}{1.5} + 30 = 70 \\; psi \\\\\n\nP_2V_2 = 70 \\times 1.5 = 105 \\; psi \\cdot ft^3 = \\frac{105 \\times 144}{778} = 19.43 \\; BTU\n\n\u0394H = \u0394U + (P_2V_2 \u2013 P_1V_1) \\\\\n\n= - 1.14 + (19.43 -36.09) \\\\\n\n\u0394H = - 17.8 \\;BTU"
change in enthalpy
Comments
Leave a comment